Acta Med. 2015, 58: 3-8

https://doi.org/10.14712/18059694.2015.84

Extracorporeal Elimination of Circulating Pegylated Liposomal Doxorubicin (PLD) to Enhance the Benefit of Cytostatic Therapy in Platinum-Resistant Ovarian Cancer Patients

Ondřej Kubečeka, Milan Bláhab, Daniel Diaz-Garciac, Stanislav Filipa

aDepartment of Oncology and Radiotherapy, Charles University in Prague, Medical Faculty and University Hospital in Hradec Králové, Czech Republic
b4th Department of Internal Medicine – Haematology, Charles University in Prague, Medical Faculty and University Hospital in Hradec Králové, Czech Republic
cDepartment of Histology and Embryology, Charles University in Prague, Medical Faculty and University Hospital in Hradec Králové, Czech Republic

Received November 20, 2014
Accepted April 1, 2015

References

1. Ledermann JA, Raja FA, Fotopoulou C et al. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2013; 24 Suppl 6: vi24–32. <https://doi.org/10.1093/annonc/mdt333>
2. Kim A, Ueda Y, Naka T, Enomoto T. Therapeutic strategies in epithelial ovarian cancer. J Exp Clin Cancer Res 2012; 31: 14. <https://doi.org/10.1186/1756-9966-31-14> <PubMed>
3. Fleming GF, Ronnett BM, Seidman J. Epithelial ovarian cancer. In Barakat RR, Markman M, Randall M (eds): Principles and practice of gynecologic oncology, 5th Edition. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins 2009; 763–836.
4. Scully RE, Sobin LH, Serov SF. Histological typing of ovarian tumours. Berlin, New York: Springer 1999.
5. Rubin SC, Randall TC, Armstrong KA et al. Ten-year follow-up of ovarian cancer patients after second-look laparotomy with negative findings. Obstet Gynecol 1999; 93: 21–24. <https://doi.org/10.1016/S0029-7844(98)00334-2>
6. Friedlander M, Trimble E, Tinker A et al. Clinical trials in recurrent ovarian cancer. Int J Gynecol Cancer 2011; 21: 771–775. <https://doi.org/10.1097/IGC.0b013e31821bb8aa>
7. National Comprehensive Cancer Network (NCCN): NCCN Clinical Practice Guidelines in Oncology. Ovarian cancer Version 2.2013 (online). Available at: http: //www.nccn.org/professionals/physician_gls/pdf/ovarian.pdf. (3 January 2014, date last accessed).
8. Petruželka L. Pegylovaný lipozomální doxorubicin. Remedia 2008; 18: 407–415.
9. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015; 10: 975–99. <https://doi.org/10.2147/IJN.S68861> <PubMed>
10. Maeda H, Wu J, Sawa T et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000; 65: 271–284. <https://doi.org/10.1016/S0168-3659(99)00248-5>
11. Papahadjopoulos D, Allen TM, Gabizon A et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A 1991; 88: 11460–11464. <https://doi.org/10.1073/pnas.88.24.11460> <PubMed>
12. Soloman R, Gabizon AA. Clinical pharmacology of liposomal anthracyclines: focus on pegylated liposomal Doxorubicin. Clin Lymphoma Myeloma 2008; 8: 21–32. <https://doi.org/10.3816/CLM.2008.n.001>
13. Caelyx – Product information (online). Date of Most Recent Amendment: 22 Oct- ober 2013. Available at: http://www.janssen.com.au/files/Products/Caelyx _PI.pdf?cdc150d5ce85dca0aaf4926b5d83144c. (3 May 2014, date last accessed).
14. Green AE, Rose PG. Pegylated liposomal doxorubicin in ovarian cancer. Int J Nanomedicine 2006; 1: 229–239.
15. Minotti G, Menna P, Salvatorelli E et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 2004; 56: 185–229. <https://doi.org/10.1124/pr.56.2.6>
16. Hortobagyi GN. Anthracyclines in the treatment of cancer. An overview. Drugs 1997; 54 Suppl 4: 1–7. <https://doi.org/10.2165/00003495-199700544-00003>
17. Meriweather VD, Bachur NR. Inhibition of DNA and RNA metabolism by daunorubicin and adriamycin in L1210 mouse leukemia, Cancer Res 1972; 32: 1137–42
18. Sinha BK, Katki AG, Batist G et al. Adriamycin-stimulated hydroxyl radical formation in human breast tumor cells. Biochem Pharmacol 1987; 36: 793–796. <https://doi.org/10.1016/0006-2952(87)90164-X>
19. Dorr RT. Cytoprotective agents for anthracyclines. Semin Oncol 1996; 23: 23–34.
20. Uziely B, Jeffers S, Isacson R et al. Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. J Clin Oncol 1995; 13: 1777–1785. <https://doi.org/10.1200/JCO.1995.13.7.1777>
21. Lotem M, Hubert A, Lyass O et al. Skin toxic effects of polyethylene glycol-coated liposomal doxorubicin. Arch Dermatol 2000; 136: 1475–1480. <https://doi.org/10.1001/archderm.136.12.1475>
22. Gordon AN, Fleagle JT, Guthrie D et al. Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol 2001; 19: 3312–3322. <https://doi.org/10.1200/JCO.2001.19.14.3312>
23. Nagore E, Insa A, Sanmartin O. Antineoplastic therapy-induced palmar plantar erythrodysesthesia (‘hand-foot’) syndrome. Incidence, recognition and management. Am J Clin Dermatol 2000; 1: 225–234. <https://doi.org/10.2165/00128071-200001040-00004>
24. Gabizon AA. Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest 2001; 19: 424–436. <https://doi.org/10.1081/CNV-100103136>
25. Martschick A, Sehouli J, Patzelt A et al. The pathogenetic mechanism of anthracycline-induced palmar-plantar erythrodysesthesia. Anticancer Res 2009; 29: 2307–2313.
26. Cox GJ, Robertson DB. Toxic erythema of palms and soles associated with high-dose mercaptopurine chemotherapy. Arch Dermatol 1986; 122: 1413–1414. <https://doi.org/10.1001/archderm.1986.01660240077020>
27. Yokomichi N, Nagasawa T, Coler-Reilly A et al. Pathogenesis of Hand-Foot Syndrome induced by PEG- modified liposomal Doxorubicin. Hum Cell 2013; 26: 8–18. <https://doi.org/10.1007/s13577-012-0057-0> <PubMed>
28. Lyass O, Uziely B, Ben-Yosef R et al. Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer 2000; 89: 1037–1047. <https://doi.org/10.1002/1097-0142(20000901)89:5<1037::AID-CNCR13>3.0.CO;2-Z>
29. Muggia FM, Hainsworth JD, Jeffers S et al. Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation. J Clin Oncol 1997; 15: 987–993. <https://doi.org/10.1200/JCO.1997.15.3.987>
30. Gabizon A, Shmeeda H, Grenader T. Pharmacological basis of pegylated liposomal doxorubicin: impact on cancer therapy. Eur J Pharm Sci 2012; 45: 388–398. <https://doi.org/10.1016/j.ejps.2011.09.006>
31. Gabizon A. Applications of liposomal drug delivery systems to cancer therapy. In Mansoor MA (ed) Nanotechnology for Cancer Therapy. New York, USA: CRC Press 2006; 595–611.
32. Greene RF, Collins JM, Jenkins JF et al. Plasma pharmacokinetics of adriamycin and adriamycinol: implications for the design of in vitro experimentsand treatment protocols. Cancer Res. 1983; 43: 3417–21.
33. Rahman A, Carmichael D, Harris M, Roh JK. Comparative pharmacokinetics of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes. Cancer Res. 1986; 46: 2295–9.
34. Piscitelli SC1, Rodvold KA, Rushing DA, Tewksbury DA. Pharmacokinetics and pharmacodynamics of doxorubicin in patients with small cell lung cancer. Clin Pharmacol Ther. 1993; 53: 555–61. <https://doi.org/10.1038/clpt.1993.69>
35. Gabizon A, Catane R, Uziely B et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 1994; 54: 987–992.
36. Fujisaka Y, Horiike A, Shimizu T et al. Phase 1 clinical study of pegylated liposomal doxorubicin (JNS002) in Japanese patients with solid tumors. Jpn J Clin Oncol 2006; 36: 768–774. <https://doi.org/10.1093/jjco/hyl109>
37. Amantea M, Newman MS, Sullivan TM et al. Relationship of dose intensity to the induction of palmar-plantar erythrodysesthia by pegylated liposomal doxorubicin in dogs. Hum Exp Toxicol 1999; 18: 17–26. <https://doi.org/10.1191/096032799678839347>
38. Amantea MA, Forrest A, Northfelt DW, Mamelok R. Population pharmacokinetics and pharmacodynamics of pegylated-liposomal doxorubicin in patients with AIDS-related Kaposi’s sarcoma. Clin Pharmacol Ther 1997; 61: 301–311. <https://doi.org/10.1016/S0009-9236(97)90162-4>
39. Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011; 63: 136–151. <https://doi.org/10.1016/j.addr.2010.04.009>
40. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46: 6387–6392.
41. Maeda H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 2001; 46: 169–185. <https://doi.org/10.1016/S0169-409X(00)00134-4>
42. Vaage J, Barbera-Guillem E, Abra R et al. Tissue distribution and therapeutic effect of intravenous free or encapsulated liposomal doxorubicin on human prostate carcinoma xenografts. Cancer 1994; 73: 1478–1484. <https://doi.org/10.1002/1097-0142(19940301)73:5<1478::AID-CNCR2820730526>3.0.CO;2-1>
43. Gabizon A, Goren D, Horowitz AT et al. Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Adv Drug Deliv Rev 1997; 24: 337–344. <https://doi.org/10.1016/S0169-409X(96)00476-0>
44. Van Rooijen N. The Liposome-Mediated “Macrophage Suicide” Technique: A Tool to Study and Manipulate Macrophage Activities. In Gregoriadis G (ed) Liposome Technology, 3rd Edition. New York, USA: Informa Healthcare 2006; 303–315.
45. La-Beck NM, Zamboni BA, Gabizon A et al. Factors affecting the pharmacokinetics of pegylated liposomal doxorubicin in patients. Cancer Chemother Pharmacol 2012; 69: 43–50. <https://doi.org/10.1007/s00280-011-1664-2>
46. Gabizon A, Isacson R, Rosengarten O et al. An open-label study to evaluate dose and cycle dependence of the pharmacokinetics of pegylated liposomal doxorubicin. Cancer Chemother Pharmacol 2008; 61: 695–702. <https://doi.org/10.1007/s00280-007-0525-5>
47. Ko EM, Lippmann Q, Caron WP et al. Clinical risk factors of PEGylated liposomal doxorubicin induced palmar plantar erythrodysesthesia in recurrent ovarian cancer patients. Gynecol Oncol 2013; 131: 683–688. <https://doi.org/10.1016/j.ygyno.2013.09.031>
48. Edwards SJ. Prevention and treatment of adverse effects related to chemotherapy for recurrent ovarian cancer. Semin Oncol Nurs 2003; 19: 19–39. <https://doi.org/10.1016/S0749-2081(03)00059-7>
49. Vail DM, Chun R, Thamm DH et al. Efficacy of pyridoxine to ameliorate the cutaneous toxicity associated with doxorubicin containing pegylated (Stealth) liposomes: a randomized, double-blind clinical trial using a canine model. Clin Cancer Res 1998; 4: 1567–1571.
50. Eckes J, Schmah O, Siebers JW et al. Kinetic targeting of pegylated liposomal doxorubicin: a new approach to reduce toxicity during chemotherapy (CARL-trial). BMC Cancer 2011; 11: 337. <https://doi.org/10.1186/1471-2407-11-337> <PubMed>
51. Harrington KJ, Mohammadtaghi S, Uster PS et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 2001; 7: 243–254.
52. Putz G, Schmah O, Eckes J et al. Controlled application and scheduled removal of nanoparticle based chemotherapeutics (CARL) will reduce dose limiting adverse events in anticancer chemotherapy. Med Hypotheses 2009; 72: 393–397. <https://doi.org/10.1016/j.mehy.2008.11.027>
53. Putz G, Schmah O, Eckes J et al. Controlled application and removal of liposomal therapeutics: effective elimination of pegylated liposomal doxorubicin by double-filtration plasmapheresis in vitro. J Clin Apher 2010; 25: 54–62. <https://doi.org/10.1002/jca.20229>
54. Charrois GJ, Allen TM. Multiple injections of pegylated liposomal Doxorubicin: pharmacokinetics and therapeutic activity. J Pharmacol Exp Ther 2003; 306: 1058–1067. <https://doi.org/10.1124/jpet.103.053413>
55. Borberg H. 26 years of LDL-apheresis: a review of experience. Transfus Apher Sci 2009; 41: 49–59. <https://doi.org/10.1016/j.transci.2009.05.013>
56. Putz G, Eckes J, Schmah O et al. Elimination of liposomes by different separation principles used in low-density lipoprotein apheresis. Ther Apher Dial 2008; 12: 2–12. <https://doi.org/10.1111/j.1744-9987.2007.00535.x>
57. Klingel R, Fassbender T, Fassbender C, Gohlen B. From membrane differential filtration to lipidfiltration: technological progress in low-density lipoprotein apheresis. Ther Apher Dial 2003; 7: 350–358. <https://doi.org/10.1046/j.1526-0968.2003.00062.x>
58. Takada Y, Ito T, Ueda Y et al. Effects of double-filtration plasmapheresis combined with interferon plus ribavirin for recurrent hepatitis C after living donor liver transplantation. Liver Transpl 2008; 14: 1044–1047. <https://doi.org/10.1002/lt.21441>
59. Bosch T. Therapeutic Apheresis-State of the Art in the Year 2005. Ther Apher 2005; 9: 459–468. <https://doi.org/10.1111/j.1744-9987.2005.00306.x>
60. Malchesky PS, Koo AP, Roberson GA et al. Apheresis technologies and clinical applications: the 2002 international apheresis registry. Ther Apher Dial 2004; 8: 124–143. <https://doi.org/10.1111/j.1526-0968.2003.00126.x>
61. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004; 303: 1818–1822. <https://doi.org/10.1126/science.1095833>
62. Blaha M, Rencova E, Langrova H et al. Rheohaemapheresis in the treatment of nonvascular age-related macular degeneration. Atheroscler Suppl. 2013; 14: 179–84. <https://doi.org/10.1016/j.atherosclerosissup.2012.10.023>
63. Blaha M, Rencova E, Blaha V et al. The importance of rheological parameters in the therapy of microcirculatory disorders. Clin Hemorheol Microcirc. 2009; 42: 37–46. <https://doi.org/10.3233/CH-2009-1184>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive