Acta Med. 2014, 57: 142-150

https://doi.org/10.14712/18059694.2015.79

NANOTECHNOLOGY – NEW TRENDS IN THE TREATMENT OF BRAIN TUMOURS

Petr Krůpaa, Svatopluk Řeháka, Daniel Diaz-Garciab, Stanislav Filipc

aCharles University in Prague, Department of Neurosurgery, Faculty of Medicine in Hradec Králové, and University Hospital Hradec Králové, Czech Republic
bCharles University in Prague, Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, and University Hospital Hradec Králové, Czech Republic
cCharles University in Prague, Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Králové, and University Hospital Hradec Králové, Czech Republic

Received May 18, 2014
Accepted January 21, 2015

References

1. Invernici G, Cristini S, Alessandri G, et al. Nanotechnology advances in brain tumors: The state of the art. Recent Patents on Anti-Cancer Drug Discovery 2011; 6: 58–69. <https://doi.org/10.2174/157489211793979990>
2. Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 2002; 28: 1–13. <https://doi.org/10.1081/DDC-120001481>
3. Béduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials 2007; 28: 4947–67. <https://doi.org/10.1016/j.biomaterials.2007.06.011>
4. Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat Rev Cancer 2005; 5: 161–71. <https://doi.org/10.1038/nrc1566>
5. Gabathuler R. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 2010; 37(1): 48–57. <https://doi.org/10.1016/j.nbd.2009.07.028>
6. Grabrucker AM, Chhabra R, Belletti D, et al. Nanoparticles as Blood–Brain Barrier Permeable CNS Targeted Drug Delivery Systems. Top Med Chem 2014; 10: 71–89. <https://doi.org/10.1007/7355_2013_22>
7. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 1986; 46: 6387–6392.
8. Zhang L, Liu Y, Yu D, Zhangl N. Gadolinium-loaded chitosan nanoparticles as magnetic resonance imaging contrast agents for the diagnosis of tumor. J Biomed Nanotechnol 2013 May; 9(5): 863–9. <https://doi.org/10.1166/jbn.2013.1584>
9. Reardon DA, Wen PY, Mellinghoff IK. Targeted molecular therapies against epidermal growth factor receptor: Past experiences and challenges. Neuro Oncol 2014 Oct; 16(suppl 8): viii7–viii13. <https://doi.org/10.1093/neuonc/nou232> <PubMed>
10. Kateb B, Chiu K, Black KL, et al. Nanoplatforms For Constructing New Approaches To Cancer Treatment, Imaging, And Drug Delivery: What Should Be The Policy? Neuroimage 2011; Jan; 54(Suppl 1): S106–24. <https://doi.org/10.1016/j.neuroimage.2010.01.105> <PubMed>
11. Sahay G, Kim JO, Kabanov AV, et al. The exploitation of differential endocytic pathways in normal and tumor cells in the selective targeting of nanoparticulate chemotherapeutic agents. J Biomaterials 2010; 31(5): 923–933. <https://doi.org/10.1016/j.biomaterials.2009.09.101> <PubMed>
12. Miki K, Oride K, Inoue S, et al. Ring-opening metathesi polymerization-based synthesis of polymeric nanoparticles for enhanced tumor imaging in vivo: synergistic effect of folate-receptor targeting and pegylation. J Biomaterials 2010; 31(5): 934–42. <https://doi.org/10.1016/j.biomaterials.2009.10.005>
13. Kreuter J, Ramge P, Petrov V, et al. Direkt evidence that polysorbate-80-coated poly(butylcyanoacrylate) NPs deliver druha of the CNS via specific mechanisms requiring prior binding of drug to the NPs. Pharm Res 2003; 20: 409–16. <https://doi.org/10.1023/A:1022604120952>
14. Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) NPs: Implications for drug and gene delivery. FASEB J 2002; 16: 1217–26. <https://doi.org/10.1096/fj.02-0088com>
15. Chen Y, Davwadi G, Benson HAE. Drug delivery across the blood-brain barrier. Cur Drug Deliv 2004; 1: 361–376. <https://doi.org/10.2174/1567201043334542>
16. Le Ray AM, Vert M, Gautier JC, Benoit JP. Fate of [14C]poly(-lactide-co-glycolide) nanoparticles after intravenous and oral administration to mice. Int J Pharm 1994; 106: 201–11. <https://doi.org/10.1016/0378-5173(94)90003-5>
17. Verrecchia T, Spenlehauer G, Bazile DV, et al. Non-Stealth (poly(lactic acid/albumin)) and stealth (poly(lactic acid-polyethylene glycol)) nanoparticles as injectable drug carriers J Control Rel 1995; 36: 49–61. <https://doi.org/10.1016/0168-3659(95)00053-B>
18. Ramos-Cabrer P, Campos F. Liposomes and nanothechnology in drug development focus on neurological targets. Int J Nanomedicine 2013; 8: 951–960. <https://doi.org/10.2147/IJN.S30721> <PubMed>
19. Gosk S, Vermehren C, Storm G, Moos T. Targeting Anti-Transferrin Receptor Antibody (OX26) and OX26-Conjugated Liposomes to Brain Capillary Endothelial Cells Using In Situ Perfusion. Journal of Cerebral Blood Flow & Metabolism 2004; 24: 1193–1204. <https://doi.org/10.1097/01.WCB.0000135592.28823.47>
20. Wen CJ, Zhang LW, Al-Suwayeh SA, Yen TC, Fang JY. Theranostic liposomes loaded with quantum dots and apomorpine for brain targeting and bioimaging. Int J Nanomedicine 2012; 7: 1599–1611.
21. Walter KA, Tamargo RJ, Olivi A, Burger PC, Brem H. Intratumoral chemotherapy. Neurosurgery 1995; 37: 1128–1145. <https://doi.org/10.1227/00006123-199512000-00013>
22. Cummings J, McArdle CS. Studies on the in vivo disposition of adriamycin in human tumours which exhibit different responses to the drug. Br J Cancer 1986; 53: 835–838. <https://doi.org/10.1038/bjc.1986.141> <PubMed>
23. Allen TM, Cullis PR. Drug delivery systems: Entering the mainstream. Science 2004; 303: 1818–1822. <https://doi.org/10.1126/science.1095833>
24. Madhankumar AB, Slagle-Webb B, Wang X, et al. Efficacy of interleukin-13 receptor-targeted liposomal doxorubicin in the intracranial brain tumor model. Mol Cancer Ther 2009; 8: 648–654. <https://doi.org/10.1158/1535-7163.MCT-08-0853>
25. Hong HY, Lee HY, Kwak W, et al. Phage display selection of peptides that home to atherosclerotic plaques: Il-4 receptor as a candidate target in atherosclerosis. J Cell Mol Med 2008; 12: 2003–2014. <https://doi.org/10.1111/j.1582-4934.2008.00189.x> <PubMed>
26. Gonzalo T, Muňoz-Fernández A. Dendrimeros y susaplicaciones biomédicas, monografia XXVIII: Nanotecnológia farmaceutica. Madrid: Real Academia Nacional de Farmácia, 2009.
27. Bravo-Osuna I, Herrero-Vanrell, R. Potencial de dendrímeros como vehiculo de fármacos em oftalmologia. Archovos de La Sociedad Espaňola de Oftalmologia 2007; 82(2): 60–70.
28. Wolinski JB, Grinstaff MW. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Advanced Drug Delivery Reviews 2008; 60(9): 1037–1055. <https://doi.org/10.1016/j.addr.2008.02.012>
29. Mishra I. Dendrimer: a novel drug delivery system. Journal of Drug Delivery and Therapeutics 2011; 1(2): 70–74. <https://doi.org/10.22270/jddt.v1i2.46>
30. Triesscheijn M, Baas P, Schellens JH, Stewart FA. Photodynamic therapy in onkology. Oncologist 2006; 11: 1034–1044. <https://doi.org/10.1634/theoncologist.11-9-1034>
31. Wiener EC, Brechbiel MW, Brothers H, et al. Dendrimer/based metal chelates:a new class of magnetic resonance imaging contrast agents. Magn Reson Med 1994; 31: 1–8. <https://doi.org/10.1002/mrm.1910310102>
32. Baek SK, Makkouk AR, Krasieva T, Sun CH, Madsen SJ, Hirschberg H. Photothermal treatment of glioma: an in vitro study of macrophage-mediated delivery of gold nanoshells. J Neurooncol 2011; 104(2): 439–448. <https://doi.org/10.1007/s11060-010-0511-3> <PubMed>
33. You J, Zhang G, Li C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 2010; 4: 1033–41. <https://doi.org/10.1021/nn901181c> <PubMed>
34. Lodhia J, Mandarano G, Ferris N, et al. Development and use of iron oxide nanopartiles (part 1): Synthesis of iron oxide nanoparticles for MRi. Biomed Imaging Interv J 2010: 6e12.
35. Corot C, Robert P, Idee JM, et al. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 2006; 58: 1471–504. <https://doi.org/10.1016/j.addr.2006.09.013>
36. Pan D, Caruthers SD, Hu G, et al. Ligand-directed nanobialys as theranostic agent for drug delivery and manganese-based magnetic resonance imaging of vascular targets. J Am Chem Soc 2008; 130: 9186–7. <https://doi.org/10.1021/ja801482d> <PubMed>
37. Na HB, Lee JH, An K, et al. Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed Engl 2007; 46: 5397–401. <https://doi.org/10.1002/anie.200604775>
38. Bridot JL, Faure AC, Laurent S, et al. Hybrid gadolinium oxide nanopaticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 2007; 129: 5076–84 <https://doi.org/10.1021/ja068356j>
39. Bourrinet P, Bengele HH, Bonnemain B, et al. Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest Radiol 2006; 41: 313–24. <https://doi.org/10.1097/01.rli.0000197669.80475.dd>
40. Neuwelt EA, Varallyay CG, Manninger S, et al. The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: a pilot study. Neurosurgery 2007; 60; 601–44. Discussion 611–2. <https://doi.org/10.1227/01.NEU.0000255350.71700.37>
41. Neuwelt EA, Hamilton BE, Varallyay CG, et al. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agents for patients at risk fro nephrogenic systemic fibrosis (NSF)? Kidney Int 2009; 75: 465–74. <https://doi.org/10.1038/ki.2008.496> <PubMed>
42. Hadjipanayis CG, Machaidze R, Kaluzova M, et al. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery a targeted therapy of glioblastoma. Cancer Res 2010; 70; 6303–12. <https://doi.org/10.1158/0008-5472.CAN-10-1022> <PubMed>
43. Soroceanu L, Gillespie Y, Khazaeli MB, et al. Use of chlorotoxin for targeting of primary brain tumors. Cancer Res 1998; 58: 4871–9.
44. Lyons SA, O’Neal J, Sontheimer H. Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia 2002; 39; 162–73. <https://doi.org/10.1002/glia.10083>
45. Lee JH, Jang JT, Choi JS, et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature Nanotechnology 2011; 6: 418–22. <https://doi.org/10.1038/nnano.2011.95>
46. Sharma R, Chen CJ. Newer nanoparticles in hyperthermia treatment and thermotherapy. Journal of Nanoparticle Research 2009; 11: 671–689. <https://doi.org/10.1007/s11051-008-9548-z>
47. Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011 Jun; 103(2): 317–24. <https://doi.org/10.1007/s11060-010-0389-0> <PubMed>
48. Sahoo NG, Bao H, Pan Y, et al. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: A comparative study. Chem Commun (camb) 2011; 47: 5235–5237. <https://doi.org/10.1039/c1cc00075f>
49. Utreja P, Jain S, Tiwary AK. Novel drug delivery systems for sustained and targeted delivery of anti-cancer drugs: Current status and future prospects. Curr Drug Deliv 2010; 7: 152–161. <https://doi.org/10.2174/156720110791011783>
50. Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug deliverz. Curr Opin Chem Biol 2005; 9: 674–679. <https://doi.org/10.1016/j.cbpa.2005.10.005>
51. Kam NW, O’Connell M, Wisdom JA, Dai H, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 2005; 102: 11600–11605. <https://doi.org/10.1073/pnas.0502680102> <PubMed>
52. Liu Z, Sun X, Nakayama-Ratchford N, Dai H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery ACS Nano 2007; 1: 50–56. <https://doi.org/10.1021/nn700040t>
53. Ong LC, Chung FF, Tan YF, Leong CO. Toxicity of single-walled carbon nanotubes. Arch Toxicol 2014 Oct 2 (Epub ahead of print).
54. Bhirde AA, Patel S, Sousa AA, et al. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine (Lond) 2010 Dec; 5(10): 1535–46. <https://doi.org/10.2217/nnm.10.90> <PubMed>
55. Caruso G, Caffo M, Raudino G, Alafaci C, Salpietro FM, Tomasello F. Antisense Oligonucleotides as an Innovative Therapeutic Strategy in the Treatment of High-Grade Gliomas. Recent Pat CNS Drug Discov 2010; 5(1): 56–69. <https://doi.org/10.2174/157488910789753503>
56. Catuogno S, Esposito CL, Quintavalle C, Condorelli G, Franciscis V de, Cerchia L. Nucleic Acids in Human Glioma Treatment: Innovative Approaches and Recent results. J Signal Transduct 2012; 2012: 735135.
57. Hendruschk S, Wiedemuth R, Aigner A, et al. RNA interference targeting survivin exerts antitumoral effects in vitro and in established glioma xenografts in vivo. Neuro-oncology 2011; 13(10): 1074–1089. <https://doi.org/10.1093/neuonc/nor098> <PubMed>
58. Pennati M, Folini M, Zaffaroni N. Targeting survivin in cancer therapy. Expert Opin Ther Targets 2008; 12(4): 463–476. <https://doi.org/10.1517/14728222.12.4.463>
59. Kwiatkowsk A, Nandhu MS, Behera P, Chiocca EA, Viapiano MS. Strategies in Gene Therapy for Glioblastoma Cancers 2013; 5: 1271–1305. <https://doi.org/10.3390/cancers5041271> <PubMed>
60. Yumitori K, Handa H, Yamashita J, Suda K, Otsuka S, Shimiyu Y. Treatment of malignat glioma with mumps virus. No Shinkei Geka 1982; 10: 143–147.
61. Assi H, Candolfi M, Baker G, Mineharu Y, Lowenstein PR, Castro MG. Gene therapy for brain tumors: Basic developments and clinical implementation. Neurosci Lett 2012; 527: 71–77. <https://doi.org/10.1016/j.neulet.2012.08.003> <PubMed>
62. Natsume A, Yoshida J. Gene therapy for high-grade glioma: Current approaches and future directions. Cell Adhes Migr 2008; 2: 186–191. <https://doi.org/10.4161/cam.2.3.6278> <PubMed>
63. Aboody KS, Brown A, Rainov NG, et al. Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000; 97: 12846–12851. <https://doi.org/10.1073/pnas.97.23.12846> <PubMed>
64. Stagg J, Lejeune I, Paquin A, Galipeau J. Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther 2004; 75: 597–608. <https://doi.org/10.1089/104303404323142042>
65. Gunnarsson S, Bexell D, Svensson A, et al. Intratumoral IL-7 delivery by mesenchyml stromal cells potentiates IFN-gamma-transduced tumor cell immunotherapy of experimental glioma. J Neuroimmunol 2010; 218: 140–144. <https://doi.org/10.1016/j.jneuroim.2009.10.017>
66. Altaner C, Altanerova V. Stem cell based glioblastoma gene therapy. Neoplasma 2012; 59(6): 756–760. <https://doi.org/10.4149/neo_2012_95>
67. Faucher L, Guay-Bégin AA, Lagueux J, Côté MF, Petitclerc E, Fortin MA. Ultra-small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI. Contrast Media Mol Imaging 2011 Jul–Aug; 6(4): 209–18.
68. Xin H, Jiang X, Gu J, et al. Angiopep-conjugated poly(ethylene glycol)-co- poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials 2011; 32(18): 4293–4305. <https://doi.org/10.1016/j.biomaterials.2011.02.044>
69. Ananda S, Nowak AK, Cher L, Dowling A, Brown C, Simes J, Rosenthal MA. Cooperative Trials Group for Neuro-Oncology (COGNO). Phase 2 trial of temozolomide and pegylated liposomal doxorubicin in the treatment of patients with glioblastoma multiforme following concurrent radiotherapy and chemotherapy. J Clin Neurosci 2011 Nov; 18(11): 1444–8. <https://doi.org/10.1016/j.jocn.2011.02.026>
70. Dhanikula RS, Argaw A, Bouchard JF, Hildgen P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol Pharm 2008 Jan–Feb; 5(1): 105–16. <https://doi.org/10.1021/mp700086j>
71. Day ES, Thompson PA, Zhang L, et al. Nanoshell-mediated photothermal therapy improves survival in a murine glioma model. J Neurooncol 2011 Aug; 104(1): 55–63. <https://doi.org/10.1007/s11060-010-0470-8> <PubMed>
72. Tobias AL, Thaci B, Auffinger B, et al. The Timing of Neural Stem Cell-Based Biotherapy is Critical for Optimal Therapeutic Efficacy when Applied with Radiation and Chemotherapy for the Treatment of Glioblastoma. Stem Cells Transl Med 2013 Sep; 2(9): 655–666. <https://doi.org/10.5966/sctm.2013-0039> <PubMed>
73. Ning J, Wakimoto H. Oncolytic herpes simplex virus-based strategies: toward a breakthrough in glioblastoma therapy. Front Microbiol 2014; 5: 303. <https://doi.org/10.3389/fmicb.2014.00303> <PubMed>
74. Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011 Jun; 103(2): 317–324. <https://doi.org/10.1007/s11060-010-0389-0> <PubMed>
75. Santos T, Fang X, Chen MT, et al. Sequential administration of carbon nanotubes and near-infrared radiation for the treatment of gliomas. Front Oncol 2014 Jul; 4: 180. <https://doi.org/10.3389/fonc.2014.00180> <PubMed>
76. Jensen SA, Day ES, Ko CH, et al. Spherical Nucleic Acid Nanoparticle Conjugates as an RNAi-Based Therapy for Glioblastoma. Sci Transl Med 2013 Oct; 5(209): 209ra152. <https://doi.org/10.1126/scitranslmed.3006839> <PubMed>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive