Acta Med. 2014, 57: 142-150
https://doi.org/10.14712/18059694.2015.79
NANOTECHNOLOGY – NEW TRENDS IN THE TREATMENT OF BRAIN TUMOURS
References
1. G, Cristini S, Alessandri G, et al. Nanotechnology advances in brain tumors: The state of the art. Recent Patents on Anti-Cancer Drug Discovery 2011; 6: 58–69.
<https://doi.org/10.2174/157489211793979990>
2. PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 2002; 28: 1–13.
<https://doi.org/10.1081/DDC-120001481>
3. A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials 2007; 28: 4947–67.
<https://doi.org/10.1016/j.biomaterials.2007.06.011>
4. M. Cancer nanotechnology: Opportunities and challenges. Nat Rev Cancer 2005; 5: 161–71.
<https://doi.org/10.1038/nrc1566>
5. R. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 2010; 37(1): 48–57.
<https://doi.org/10.1016/j.nbd.2009.07.028>
6. AM, Chhabra R, Belletti D, et al. Nanoparticles as Blood–Brain Barrier Permeable CNS Targeted Drug Delivery Systems. Top Med Chem 2014; 10: 71–89.
<https://doi.org/10.1007/7355_2013_22>
7. Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 1986; 46: 6387–6392.
8. L, Liu Y, Yu D, Zhangl N. Gadolinium-loaded chitosan nanoparticles as magnetic resonance imaging contrast agents for the diagnosis of tumor. J Biomed Nanotechnol 2013 May; 9(5): 863–9.
<https://doi.org/10.1166/jbn.2013.1584>
9. DA, Wen PY, Mellinghoff IK. Targeted molecular therapies against epidermal growth factor receptor: Past experiences and challenges. Neuro Oncol 2014 Oct; 16(suppl 8): viii7–viii13.
<https://doi.org/10.1093/neuonc/nou232>
<PubMed>
10. B, Chiu K, Black KL, et al. Nanoplatforms For Constructing New Approaches To Cancer Treatment, Imaging, And Drug Delivery: What Should Be The Policy? Neuroimage 2011; Jan; 54(Suppl 1): S106–24.
<https://doi.org/10.1016/j.neuroimage.2010.01.105>
<PubMed>
11. G, Kim JO, Kabanov AV, et al. The exploitation of differential endocytic pathways in normal and tumor cells in the selective targeting of nanoparticulate chemotherapeutic agents. J Biomaterials 2010; 31(5): 923–933.
<https://doi.org/10.1016/j.biomaterials.2009.09.101>
<PubMed>
12. K, Oride K, Inoue S, et al. Ring-opening metathesi polymerization-based synthesis of polymeric nanoparticles for enhanced tumor imaging in vivo: synergistic effect of folate-receptor targeting and pegylation. J Biomaterials 2010; 31(5): 934–42.
<https://doi.org/10.1016/j.biomaterials.2009.10.005>
13. J, Ramge P, Petrov V, et al. Direkt evidence that polysorbate-80-coated poly(butylcyanoacrylate) NPs deliver druha of the CNS via specific mechanisms requiring prior binding of drug to the NPs. Pharm Res 2003; 20: 409–16.
<https://doi.org/10.1023/A:1022604120952>
14. J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) NPs: Implications for drug and gene delivery. FASEB J 2002; 16: 1217–26.
<https://doi.org/10.1096/fj.02-0088com>
15. Y, Davwadi G, Benson HAE. Drug delivery across the blood-brain barrier. Cur Drug Deliv 2004; 1: 361–376.
<https://doi.org/10.2174/1567201043334542>
16. AM, Vert M, Gautier JC, Benoit JP. Fate of [14C]poly(-lactide-co-glycolide) nanoparticles after intravenous and oral administration to mice. Int J Pharm 1994; 106: 201–11.
<https://doi.org/10.1016/0378-5173(94)90003-5>
17. T, Spenlehauer G, Bazile DV, et al. Non-Stealth (poly(lactic acid/albumin)) and stealth (poly(lactic acid-polyethylene glycol)) nanoparticles as injectable drug carriers J Control Rel 1995; 36: 49–61.
<https://doi.org/10.1016/0168-3659(95)00053-B>
18. P, Campos F. Liposomes and nanothechnology in drug development focus on neurological targets. Int J Nanomedicine 2013; 8: 951–960.
<https://doi.org/10.2147/IJN.S30721>
<PubMed>
19. S, Vermehren C, Storm G, Moos T. Targeting Anti-Transferrin Receptor Antibody (OX26) and OX26-Conjugated Liposomes to Brain Capillary Endothelial Cells Using In Situ Perfusion. Journal of Cerebral Blood Flow & Metabolism 2004; 24: 1193–1204.
<https://doi.org/10.1097/01.WCB.0000135592.28823.47>
20. CJ, Zhang LW, Al-Suwayeh SA, Yen TC, Fang JY. Theranostic liposomes loaded with quantum dots and apomorpine for brain targeting and bioimaging. Int J Nanomedicine 2012; 7: 1599–1611.
21. KA, Tamargo RJ, Olivi A, Burger PC, Brem H. Intratumoral chemotherapy. Neurosurgery 1995; 37: 1128–1145.
<https://doi.org/10.1227/00006123-199512000-00013>
22. J, McArdle CS. Studies on the in vivo disposition of adriamycin in human tumours which exhibit different responses to the drug. Br J Cancer 1986; 53: 835–838.
<https://doi.org/10.1038/bjc.1986.141>
<PubMed>
23. TM, Cullis PR. Drug delivery systems: Entering the mainstream. Science 2004; 303: 1818–1822.
<https://doi.org/10.1126/science.1095833>
24. AB, Slagle-Webb B, Wang X, et al. Efficacy of interleukin-13 receptor-targeted liposomal doxorubicin in the intracranial brain tumor model. Mol Cancer Ther 2009; 8: 648–654.
<https://doi.org/10.1158/1535-7163.MCT-08-0853>
25. HY, Lee HY, Kwak W, et al. Phage display selection of peptides that home to atherosclerotic plaques: Il-4 receptor as a candidate target in atherosclerosis. J Cell Mol Med 2008; 12: 2003–2014.
<https://doi.org/10.1111/j.1582-4934.2008.00189.x>
<PubMed>
26. Gonzalo T, Muňoz-Fernández A. Dendrimeros y susaplicaciones biomédicas, monografia XXVIII: Nanotecnológia farmaceutica. Madrid: Real Academia Nacional de Farmácia, 2009.
27. I, Herrero-Vanrell, R. Potencial de dendrímeros como vehiculo de fármacos em oftalmologia. Archovos de La Sociedad Espaňola de Oftalmologia 2007; 82(2): 60–70.
28. JB, Grinstaff MW. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Advanced Drug Delivery Reviews 2008; 60(9): 1037–1055.
<https://doi.org/10.1016/j.addr.2008.02.012>
29. I. Dendrimer: a novel drug delivery system. Journal of Drug Delivery and Therapeutics 2011; 1(2): 70–74.
<https://doi.org/10.22270/jddt.v1i2.46>
30. M, Baas P, Schellens JH, Stewart FA. Photodynamic therapy in onkology. Oncologist 2006; 11: 1034–1044.
<https://doi.org/10.1634/theoncologist.11-9-1034>
31. EC, Brechbiel MW, Brothers H, et al. Dendrimer/based metal chelates:a new class of magnetic resonance imaging contrast agents. Magn Reson Med 1994; 31: 1–8.
<https://doi.org/10.1002/mrm.1910310102>
32. SK, Makkouk AR, Krasieva T, Sun CH, Madsen SJ, Hirschberg H. Photothermal treatment of glioma: an in vitro study of macrophage-mediated delivery of gold nanoshells. J Neurooncol 2011; 104(2): 439–448.
<https://doi.org/10.1007/s11060-010-0511-3>
<PubMed>
33. J, Zhang G, Li C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 2010; 4: 1033–41.
<https://doi.org/10.1021/nn901181c>
<PubMed>
34. J, Mandarano G, Ferris N, et al. Development and use of iron oxide nanopartiles (part 1): Synthesis of iron oxide nanoparticles for MRi. Biomed Imaging Interv J 2010: 6e12.
35. C, Robert P, Idee JM, et al. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 2006; 58: 1471–504.
<https://doi.org/10.1016/j.addr.2006.09.013>
36. D, Caruthers SD, Hu G, et al. Ligand-directed nanobialys as theranostic agent for drug delivery and manganese-based magnetic resonance imaging of vascular targets. J Am Chem Soc 2008; 130: 9186–7.
<https://doi.org/10.1021/ja801482d>
<PubMed>
37. HB, Lee JH, An K, et al. Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed Engl 2007; 46: 5397–401.
<https://doi.org/10.1002/anie.200604775>
38. JL, Faure AC, Laurent S, et al. Hybrid gadolinium oxide nanopaticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 2007; 129: 5076–84
<https://doi.org/10.1021/ja068356j>
39. P, Bengele HH, Bonnemain B, et al. Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest Radiol 2006; 41: 313–24.
<https://doi.org/10.1097/01.rli.0000197669.80475.dd>
40. EA, Varallyay CG, Manninger S, et al. The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: a pilot study. Neurosurgery 2007; 60; 601–44. Discussion 611–2.
<https://doi.org/10.1227/01.NEU.0000255350.71700.37>
41. EA, Hamilton BE, Varallyay CG, et al. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agents for patients at risk fro nephrogenic systemic fibrosis (NSF)? Kidney Int 2009; 75: 465–74.
<https://doi.org/10.1038/ki.2008.496>
<PubMed>
42. CG, Machaidze R, Kaluzova M, et al. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery a targeted therapy of glioblastoma. Cancer Res 2010; 70; 6303–12.
<https://doi.org/10.1158/0008-5472.CAN-10-1022>
<PubMed>
43. L, Gillespie Y, Khazaeli MB, et al. Use of chlorotoxin for targeting of primary brain tumors. Cancer Res 1998; 58: 4871–9.
44. SA, O’Neal J, Sontheimer H. Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia 2002; 39; 162–73.
<https://doi.org/10.1002/glia.10083>
45. JH, Jang JT, Choi JS, et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature Nanotechnology 2011; 6: 418–22.
<https://doi.org/10.1038/nnano.2011.95>
46. R, Chen CJ. Newer nanoparticles in hyperthermia treatment and thermotherapy. Journal of Nanoparticle Research 2009; 11: 671–689.
<https://doi.org/10.1007/s11051-008-9548-z>
47. K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011 Jun; 103(2): 317–24.
<https://doi.org/10.1007/s11060-010-0389-0>
<PubMed>
48. NG, Bao H, Pan Y, et al. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: A comparative study. Chem Commun (camb) 2011; 47: 5235–5237.
<https://doi.org/10.1039/c1cc00075f>
49. P, Jain S, Tiwary AK. Novel drug delivery systems for sustained and targeted delivery of anti-cancer drugs: Current status and future prospects. Curr Drug Deliv 2010; 7: 152–161.
<https://doi.org/10.2174/156720110791011783>
50. A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug deliverz. Curr Opin Chem Biol 2005; 9: 674–679.
<https://doi.org/10.1016/j.cbpa.2005.10.005>
51. NW, O’Connell M, Wisdom JA, Dai H, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 2005; 102: 11600–11605.
<https://doi.org/10.1073/pnas.0502680102>
<PubMed>
52. Z, Sun X, Nakayama-Ratchford N, Dai H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery ACS Nano 2007; 1: 50–56.
<https://doi.org/10.1021/nn700040t>
53. Ong LC, Chung FF, Tan YF, Leong CO. Toxicity of single-walled carbon nanotubes. Arch Toxicol 2014 Oct 2 (Epub ahead of print).
54. AA, Patel S, Sousa AA, et al. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine (Lond) 2010 Dec; 5(10): 1535–46.
<https://doi.org/10.2217/nnm.10.90>
<PubMed>
55. G, Caffo M, Raudino G, Alafaci C, Salpietro FM, Tomasello F. Antisense Oligonucleotides as an Innovative Therapeutic Strategy in the Treatment of High-Grade Gliomas. Recent Pat CNS Drug Discov 2010; 5(1): 56–69.
<https://doi.org/10.2174/157488910789753503>
56. S, Esposito CL, Quintavalle C, Condorelli G, Franciscis V de, Cerchia L. Nucleic Acids in Human Glioma Treatment: Innovative Approaches and Recent results. J Signal Transduct 2012; 2012: 735135.
57. S, Wiedemuth R, Aigner A, et al. RNA interference targeting survivin exerts antitumoral effects in vitro and in established glioma xenografts in vivo. Neuro-oncology 2011; 13(10): 1074–1089.
<https://doi.org/10.1093/neuonc/nor098>
<PubMed>
58. M, Folini M, Zaffaroni N. Targeting survivin in cancer therapy. Expert Opin Ther Targets 2008; 12(4): 463–476.
<https://doi.org/10.1517/14728222.12.4.463>
59. A, Nandhu MS, Behera P, Chiocca EA, Viapiano MS. Strategies in Gene Therapy for Glioblastoma Cancers 2013; 5: 1271–1305.
<https://doi.org/10.3390/cancers5041271>
<PubMed>
60. K, Handa H, Yamashita J, Suda K, Otsuka S, Shimiyu Y. Treatment of malignat glioma with mumps virus. No Shinkei Geka 1982; 10: 143–147.
61. H, Candolfi M, Baker G, Mineharu Y, Lowenstein PR, Castro MG. Gene therapy for brain tumors: Basic developments and clinical implementation. Neurosci Lett 2012; 527: 71–77.
<https://doi.org/10.1016/j.neulet.2012.08.003>
<PubMed>
62. A, Yoshida J. Gene therapy for high-grade glioma: Current approaches and future directions. Cell Adhes Migr 2008; 2: 186–191.
<https://doi.org/10.4161/cam.2.3.6278>
<PubMed>
63. KS, Brown A, Rainov NG, et al. Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000; 97: 12846–12851.
<https://doi.org/10.1073/pnas.97.23.12846>
<PubMed>
64. J, Lejeune I, Paquin A, Galipeau J. Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther 2004; 75: 597–608.
<https://doi.org/10.1089/104303404323142042>
65. S, Bexell D, Svensson A, et al. Intratumoral IL-7 delivery by mesenchyml stromal cells potentiates IFN-gamma-transduced tumor cell immunotherapy of experimental glioma. J Neuroimmunol 2010; 218: 140–144.
<https://doi.org/10.1016/j.jneuroim.2009.10.017>
66. C, Altanerova V. Stem cell based glioblastoma gene therapy. Neoplasma 2012; 59(6): 756–760.
<https://doi.org/10.4149/neo_2012_95>
67. L, Guay-Bégin AA, Lagueux J, Côté MF, Petitclerc E, Fortin MA. Ultra-small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI. Contrast Media Mol Imaging 2011 Jul–Aug; 6(4): 209–18.
68. H, Jiang X, Gu J, et al. Angiopep-conjugated poly(ethylene glycol)-co- poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials 2011; 32(18): 4293–4305.
<https://doi.org/10.1016/j.biomaterials.2011.02.044>
69. S, Nowak AK, Cher L, Dowling A, Brown C, Simes J, Rosenthal MA. Cooperative Trials Group for Neuro-Oncology (COGNO). Phase 2 trial of temozolomide and pegylated liposomal doxorubicin in the treatment of patients with glioblastoma multiforme following concurrent radiotherapy and chemotherapy. J Clin Neurosci 2011 Nov; 18(11): 1444–8.
<https://doi.org/10.1016/j.jocn.2011.02.026>
70. RS, Argaw A, Bouchard JF, Hildgen P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol Pharm 2008 Jan–Feb; 5(1): 105–16.
<https://doi.org/10.1021/mp700086j>
71. ES, Thompson PA, Zhang L, et al. Nanoshell-mediated photothermal therapy improves survival in a murine glioma model. J Neurooncol 2011 Aug; 104(1): 55–63.
<https://doi.org/10.1007/s11060-010-0470-8>
<PubMed>
72. AL, Thaci B, Auffinger B, et al. The Timing of Neural Stem Cell-Based Biotherapy is Critical for Optimal Therapeutic Efficacy when Applied with Radiation and Chemotherapy for the Treatment of Glioblastoma. Stem Cells Transl Med 2013 Sep; 2(9): 655–666.
<https://doi.org/10.5966/sctm.2013-0039>
<PubMed>
73. J, Wakimoto H. Oncolytic herpes simplex virus-based strategies: toward a breakthrough in glioblastoma therapy. Front Microbiol 2014; 5: 303.
<https://doi.org/10.3389/fmicb.2014.00303>
<PubMed>
74. K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011 Jun; 103(2): 317–324.
<https://doi.org/10.1007/s11060-010-0389-0>
<PubMed>
75. T, Fang X, Chen MT, et al. Sequential administration of carbon nanotubes and near-infrared radiation for the treatment of gliomas. Front Oncol 2014 Jul; 4: 180.
<https://doi.org/10.3389/fonc.2014.00180>
<PubMed>
76. SA, Day ES, Ko CH, et al. Spherical Nucleic Acid Nanoparticle Conjugates as an RNAi-Based Therapy for Glioblastoma. Sci Transl Med 2013 Oct; 5(209): 209ra152.
<https://doi.org/10.1126/scitranslmed.3006839>
<PubMed>


