Acta Med. 2014, 57: 89-96
https://doi.org/10.14712/18059694.2014.46
Crohn’s Disease: a Role of Gut Microbiota and Nod2 Gene Polymorphisms in Disease Pathogenesis
References
1. Gastroenterology 2010; 139(6): 1816–9.
< RB. Genetics and environmental interactions shape the intestinal microbiome to promote inflammatory bowel disease versus mucosal homeostasis. https://doi.org/10.1053/j.gastro.2010.10.036>
2. Bulletin de l’Academie nationale de medecine 2007; 191(6): 1105–18; discussion 1118–23.
< JF, et al. Epidemiology and risk factors of inflammatory bowel diseases. https://doi.org/10.1016/S0001-4079(19)32982-6>
3. Gastroenterology 2011; 140(6): 1785–94.
< J, et al. Epidemiology and natural history of inflammatory bowel diseases. https://doi.org/10.1053/j.gastro.2011.01.055>
4. West J Med 1988; 149(5): 541–6.
RA, Kaufman L. Epidemiology of inflammatory bowel disease in a defined northern California population.
5. Scand J Gastroenterol 1996; 31(4): 355–61.
< B, et al. Incidence of Crohn’s disease in four counties in southeastern Norway, 1990–93. A prospective population-based study. The Inflammatory Bowel South-Eastern Norway (IBSEN) Study Group of Gastroenterologists. https://doi.org/10.3109/00365529609006410>
6. Inflammatory bowel diseases 2011; 17(2): 639–44.
< DC, et al. IBD Around the world: comparing the epidemiology, diagnosis, and treatment: proceedings of the World Digestive Health Day 2010 – Inflammatory Bowel Disease Task Force meeting. https://doi.org/10.1002/ibd.21409>
7. Gastroenterol Hepatol (NY) 2010; 6(5): 339–46.
NA, Kaplan GG. Environmental risk factors for inflammatory bowel disease.
8. Scand J Immunol 2005; 62(Suppl 1): 106–13.
< H, et al. Interaction of mucosal microbiota with the innate immune system. https://doi.org/10.1111/j.1365-3083.2005.01618.x>
9. Immunol Rev 2011; 241(1): 241–59.
< HL, et al. Oral tolerance. https://doi.org/10.1111/j.1600-065X.2011.01017.x>
<PubMed>
10. Nature 2011; 474(7351): 307–17.
< B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. https://doi.org/10.1038/nature10209>
<PubMed>
11. Cellular & molecular immunology 2011; 8(2): 110–20.
< H, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. https://doi.org/10.1038/cmi.2010.67>
<PubMed>
12. BMC Immunol 2008; 9: 65.
< T, et al. Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. https://doi.org/10.1186/1471-2172-9-65>
<PubMed>
13. Inflammatory bowel diseases 2007; 13(10): 1202–11.
< R, et al. Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4+ T cells. https://doi.org/10.1002/ibd.20221>
14. Immunol Rev 2001; 182: 190–200.
< B, et al. Control of intestinal inflammation by regulatory T cells. https://doi.org/10.1034/j.1600-065X.2001.1820115.x>
15. Inflammatory bowel diseases 2013; 19(6): 1266–77.
< K, et al. Altered gut microbiota promotes colitis-associated cancer in IL-1 receptor-associated kinase M-deficient mice. https://doi.org/10.1097/MIB.0b013e318281330a>
<PubMed>
16. Autoimmunity reviews 2004; 3(5): 394–400.
< S, Sans M, Fiocchi C. Inflammatory bowel disease: the role of environmental factors. https://doi.org/10.1016/j.autrev.2004.03.002>
17. Cell 2010; 141(7): 1135–45.
< K, et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. https://doi.org/10.1016/j.cell.2010.05.009>
<PubMed>
18. Curr Opin Gastroenterol 2009; 25(4): 301–5.
< F, Bernstein CN. The evolving epidemiology of inflammatory bowel disease. https://doi.org/10.1097/MOG.0b013e32832b12ef>
19. Lancet 1994; 343(8900): 766–7.
< AE, et al. Inflammatory bowel disease and domestic hygiene in infancy. https://doi.org/10.1016/S0140-6736(94)91841-4>
20. World journal of gastroenterology 2006; 12(23): 3668–72.
< L, et al. Family and twin studies in inflammatory bowel disease. https://doi.org/10.3748/wjg.v12.i23.3668>
<PubMed>
21. Nat Genet 2010; 42(12): 1118–25.
< A, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. https://doi.org/10.1038/ng.717>
<PubMed>
22. Immunity 2011; 34(3): 293–302.
< M, Elson CO. Experimental inflammatory bowel disease: insights into the host-microbiota dialog. https://doi.org/10.1016/j.immuni.2011.03.008>
<PubMed>
23. Nature 2001; 411(6837): 599–603.
< JP, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. https://doi.org/10.1038/35079107>
24. Nature 2001; 411(6837): 603–6.
< Y, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. https://doi.org/10.1038/35079114>
25. The Journal of biological chemistry 2003; 278(8): 5509–12.
< N, et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. https://doi.org/10.1074/jbc.C200673200>
26. Scand J Gastroenterol 2006; 41(12): 1421–32.
< J, et al. Homozygosity for the CARD15 frameshift mutation 1007fs is predictive of early onset of Crohn’s disease with ileal stenosis, entero-enteral fistulas, and frequent need for surgical intervention with high risk of re-stenosis. https://doi.org/10.1080/00365520600703900>
27. Inflammatory bowel diseases 2006; 12(12): 1114–21.
< J, et al. Predictive value of the CARD15 variant 1007fs for the diagnosis of intestinal stenoses and the need for surgery in Crohn’s disease in clinical practice: results of a prospective study. https://doi.org/10.1097/01.mib.0000235836.32176.5e>
28. Dig Dis Sci 2005; 50(12): 2316–22.
< HE, et al. Gastroduodenal Crohn’s disease is associated with NOD2/CARD15 gene polymorphisms, particularly L1007P homozygosity. https://doi.org/10.1007/s10620-005-3054-2>
29. Nature genetics 2001; 29(1): 19–20.
< C, et al. CARD15 mutations in Blau syndrome. https://doi.org/10.1038/ng720>
30. Blood 2005; 105(3): 1195–7.
< N, et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. https://doi.org/10.1182/blood-2004-07-2972>
31. American journal of human genetics 2002; 70(4): 845–57.
< S, et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. https://doi.org/10.1086/339432>
<PubMed>
32. The American journal of gastroenterology 2003; 98(3): 613–7.
< K, et al. Card15 and Crohn’s disease: healthy homozygous carriers of the 3020insC frameshift mutation. https://doi.org/10.1111/j.1572-0241.2003.07287.x>
33. Science 2005; 307(5710): 731–4.
< KS, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. https://doi.org/10.1126/science.1104911>
34. The American journal of gastroenterology 2004; 99(2): 299–305.
< N, et al. Transmission of CARD15 (NOD2) variants within families of patients with inflammatory bowel disease. https://doi.org/10.1111/j.1572-0241.2004.04040.x>
35. Journal of human genetics 2002; 47(9): 469–72.
< K, et al. Absence of mutation in the NOD2/CARD15 gene among 483 Japanese patients with Crohn’s disease. https://doi.org/10.1007/s100380200067>
36. World journal of gastroenterology : WJG 2004; 10(7): 1069–71.
< QS, et al. NOD2 3020insC frameshift mutation is not associated with inflammatory bowel disease in Chinese patients of Han nationality. https://doi.org/10.3748/wjg.v10.i7.1069>
<PubMed>
37. Pediatrics international: official journal of the Japan Pediatric Society 2010; 52(6): 888–9.
< JY, et al. Lack of common NOD2 mutations in Korean pediatric patients with inflammatory bowel disease. https://doi.org/10.1111/j.1442-200X.2010.03269.x>
38. Blood 2004; 104(3): 889–94.
< E, et al. Both donor and recipient NOD2/CARD15 mutations associate with transplant-related mortality and GvHD following allogeneic stem cell transplantation. https://doi.org/10.1182/blood-2003-10-3543>
39. J Cell Biol 2005; 170(1): 21–6.
< N, et al. Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-{kappa}B activation in muramyl dipeptide recognition. https://doi.org/10.1083/jcb.200502153>
<PubMed>
40. Nature immunology 2009; 10(10): 1073–80.
< A, et al. Activation of innate immune antiviral responses by Nod2. https://doi.org/10.1038/ni.1782>
<PubMed>
41. The Journal of biological chemistry 2001; 276(7): 4812–8.
< Y, et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. https://doi.org/10.1074/jbc.M008072200>
42. Gastroenterology 2003; 124(4): 993–1000.
< T, et al. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. https://doi.org/10.1053/gast.2003.50153>
43. Nature 2007; 448(7152): 427–34.
< RJ and Podolsky DK, Unravelling the pathogenesis of inflammatory bowel disease. https://doi.org/10.1038/nature06005>
44. Nature genetics 2008; 40(8): 955–62.
< JC, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. https://doi.org/10.1038/ng.175>
45. Nature reviews. Immunology 2008; 8(6): 435–46.
< JL, Powrie F. Dendritic cells in intestinal immune regulation. https://doi.org/10.1038/nri2335>
<PubMed>
46. Nat Immunol 2009; 10(12): 1267–74.
< MH, et al. T cell-intrinsic role of Nod2 in promoting type 1 immunity to Toxoplasma gondii. https://doi.org/10.1038/ni.1816>
<PubMed>
47. Immunity 2007; 26(4): 445–59.
< JH, et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. https://doi.org/10.1016/j.immuni.2007.03.009>
48. Journal of immunology 2008; 181(11): 7925–35.
< JG, et al. Nod2-dependent Th2 polarization of antigen-specific immunity. https://doi.org/10.4049/jimmunol.181.11.7925>
49. Immunity 2007; 27(4): 660–9.
< AJ, et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. https://doi.org/10.1016/j.immuni.2007.08.013>
50. EMBO J 2008; 27(2): 373–83.
< M, et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. https://doi.org/10.1038/sj.emboj.7601962>
<PubMed>
51. Curr Biol 2004; 14(24): 2217–27.
< DW, et al. The Crohn’s disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. https://doi.org/10.1016/j.cub.2004.12.032>
52. Curr Biol 2009; 19(15): 1255–63.
< M, et al. ITCH K63-ubiquitinates the NOD2 binding protein, RIP2, to influence inflammatory signaling pathways. https://doi.org/10.1016/j.cub.2009.06.038>
<PubMed>
53. Nature 2011; 474(7349): 96–9.
< G, et al. Non-apoptotic role of BID in inflammation and innate immunity. https://doi.org/10.1038/nature09982>
54. Strober W, Watanabe T. NOD2, an intracellular innate immune sensor involved in host defense and Crohn’s disease. Mucosal immunology 2011.
55. Nature 2008; 451(7182): 1069–75.
< N, et al. Autophagy fights disease through cellular self-digestion. https://doi.org/10.1038/nature06639>
<PubMed>
56. Nature immunology 2010; 11(1): 55–62.
< LH, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. https://doi.org/10.1038/ni.1823>
57. Nat Med 2010; 16(1): 90–7.
< R, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. https://doi.org/10.1038/nm.2069>
58. Nature 2011; 469(7329): 221–5.
< R, et al. A role for mitochondria in NLRP3 inflammasome activation. https://doi.org/10.1038/nature09663>
59. Nature 2011; 474(7351): 298–306.
< KJ and Powrie F, Intestinal homeostasis and its breakdown in inflammatory bowel disease. https://doi.org/10.1038/nature10208>
60. Proceedings of the National Academy of Sciences of the United States of America 2010; 107(33): 14739–44.
< A, et al. Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum. https://doi.org/10.1073/pnas.1003363107>
<PubMed>
61. Proc Natl Acad Sci U S A 2009; 106(37): 15813–8.
< T, et al. Nod2 is required for the regulation of commensal microbiota in the intestine. https://doi.org/10.1073/pnas.0907722106>
<PubMed>
62. Immunity 2006; 25(3): 473–85.
< T, et al. Nucleotide binding oligomerization domain 2 deficiency leads to dysregulated TLR2 signaling and induction of antigen-specific colitis. https://doi.org/10.1016/j.immuni.2006.06.018>
63. Microbes Infect 2010; 12(11): 819–27.
< MS, et al. The pattern recognition receptors Nod1 and Nod2 account for neutrophil recruitment to the lungs of mice infected with Legionella pneumophila. https://doi.org/10.1016/j.micinf.2010.05.006>
64. Infection and immunity 2010; 78(12): 5107–15.
< K, et al. Nod1 and Nod2 regulation of inflammation in the Salmonella colitis model. https://doi.org/10.1128/IAI.00759-10>
<PubMed>
65. PLoS One 2011; 6(2): e17414.
< T, et al. Nod2 suppresses Borrelia burgdorferi mediated murine Lyme arthritis and carditis through the induction of tolerance. https://doi.org/10.1371/journal.pone.0017414>
<PubMed>
66. Proc Natl Acad Sci U S A 2007; 104(49): 19440–5.
< M, et al. Chronic stimulation of Nod2 mediates tolerance to bacterial products. https://doi.org/10.1073/pnas.0706097104>
<PubMed>
67. Immunology 2008; 123(4): 600–5.
< BJ, et al. Crohn’s disease patients homozygous for the 3020insC NOD2 mutation have a defective NOD2/TLR4 cross-tolerance to intestinal stimuli. https://doi.org/10.1111/j.1365-2567.2007.02735.x>
<PubMed>
68. Nature immunology 2004; 5(8): 800–8.
< T, et al. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. https://doi.org/10.1038/ni1092>
69. Trends in immunology 2011; 32(2): 73–9.
< MH, et al. The ever-expanding function of NOD2: autophagy, viral recognition, and T cell activation. https://doi.org/10.1016/j.it.2010.12.007>
<PubMed>
70. J Exp Med 1994; 179(1): 299–304.
< RA, et al. CD28-mediated costimulation of interleukin 2 (IL-2) production plays a critical role in T cell priming for IL-4 and interferon gamma production. https://doi.org/10.1084/jem.179.1.299>
<PubMed>
71. Gut 2010; 59(2): 207–17.
< F, et al. Nod2 regulates the host response towards microflora by modulating T cell function and epithelial permeability in mouse Peyer’s patches. https://doi.org/10.1136/gut.2008.171546>
72. Mucosal immunology 2011; 4(2): 127–32.
< RB. Key questions to guide a better understanding of host-commensal microbiota interactions in intestinal inflammation. https://doi.org/10.1038/mi.2010.87>
73. Gastroenterology 2011; 140(6): 1720–28.
< B, Darfeuille-Michaud A. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. https://doi.org/10.1053/j.gastro.2011.01.054>
74. Gastroenterology 2010; 139(6): 1844–1854 e1.
< BP, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. https://doi.org/10.1053/j.gastro.2010.08.049>
75. Nat Immunol 2011; 12(1): 5–9.
< KM, Mackay CR. Diet, gut microbiota and immune responses. https://doi.org/10.1038/ni0111-5>
76. Science 2011; 331(6015): 337–41.
< K, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. https://doi.org/10.1126/science.1198469>
<PubMed>
77. Proceedings of the National Academy of Sciences of the United States of America 2008; 105(43): 16731–6.
< H, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. https://doi.org/10.1073/pnas.0804812105>
<PubMed>
78. Gastroenterology 2004; 127(2): 412–21.
< A, et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. https://doi.org/10.1053/j.gastro.2004.04.061>
79. Gut 2007; 56(5): 669–75.
< R, et al. High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. https://doi.org/10.1136/gut.2006.099796>
<PubMed>
80. The Journal of clinical investigation 2007; 117(6): 1566–74.
< N, et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. https://doi.org/10.1172/JCI30504>
<PubMed>
81. Gut 2010; 59(10): 1355–62.
< N, et al. Abnormally expressed ER stress response chaperone Gp96 in CD favours adherent-invasive Escherichia coli invasion. https://doi.org/10.1136/gut.2010.207456>
<PubMed>
82. Int J Med Microbiol 2008; 298(5–6): 397–409.
< T, et al. Escherichia coli isolated from a Crohn’s disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells. https://doi.org/10.1016/j.ijmm.2007.05.011>
83. The Journal of clinical investigation 2011; 121(3): 966–75.
< B, et al. Crohn disease – associated adherent-invasive E. coli bacteria target mouse and human Peyer’s patches via long polar fimbriae. https://doi.org/10.1172/JCI44632>
<PubMed>
84. Infection and immunity 2001; 69(9): 5529–37.
< AL, et al. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. https://doi.org/10.1128/IAI.69.9.5529-5537.2001>
<PubMed>
85. Cellular microbiology 2007; 9(5): 1252–61.
< S, et al. Adherent-invasive Escherichia coli isolated from Crohn’s disease patients induce granulomas in vitro. https://doi.org/10.1111/j.1462-5822.2006.00868.x>
86. Nature immunology 2007; 8(5): 448–50.
< LH. Trawling for treasure: tales of T-bet. https://doi.org/10.1038/ni0507-448>
87. Inflammatory bowel diseases 2006; 12(7): 581–7.
< A, et al. A new transcription factor that regulates TNF-alpha gene expression, LITAF, is increased in intestinal tissues from patients with CD and UC. https://doi.org/10.1097/01.MIB.0000225338.14356.d5>
88. Expert Rev Gastroenterol Hepatol 2009; 3(5): 535–46.
< PI, Love DR, Ferguson LR. Role of gut microbiota in Crohn’s disease. https://doi.org/10.1586/egh.09.47>
89. Cytokine Growth Factor Rev 2011; 22(2): 83–9.
< MF Finotto S. IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. https://doi.org/10.1016/j.cytogfr.2011.02.003>
90. Current opinion in immunology 2009; 21(3): 274–80.
< YK, et al. Developmental plasticity of Th17 and Treg cells. https://doi.org/10.1016/j.coi.2009.05.021>
91. The Journal of clinical investigation 2008; 118(6): 2269–80.
N, et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis.
92. Immunity 2010; 33(2): 279–88.
< PP, et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. https://doi.org/10.1016/j.immuni.2010.08.010>
<PubMed>
93. Mucosal immunology 2008; 1(5): 339–49.
< KJ, Kullberg MC. IL-23 and Th17 cytokines in intestinal homeostasis. https://doi.org/10.1038/mi.2008.28>
94. Gastroenterology 2009; 136(1): 257–67.
< M, et al. RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. https://doi.org/10.1053/j.gastro.2008.10.018>
95. J Exp Med 2010; 207(6): 1293–305.
< GF, et al. Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. https://doi.org/10.1084/jem.20092054>
<PubMed>
96. Nat Immunol 2011; 12(5): 383–90.
< GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. https://doi.org/10.1038/ni.2025>
97. Semin Immunopathol 2010; 32(1): 17–31.
< K, et al. Biology of interleukin-22. https://doi.org/10.1007/s00281-009-0188-x>
98. Gastroenterology 2011; 140(6): 1756–67.
< W, Fuss IJ. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. https://doi.org/10.1053/j.gastro.2011.02.016>
<PubMed>
99. Smith PD. Principles of Mucosal Immunology, Garland Science, Taylor & Francis Groupe, LLC 2013: 529.