Acta Med. 2014, 57: 41-48
https://doi.org/10.14712/18059694.2014.38
CELLULAR RESPONSES TO EGG-OIL (CHARISMON©)
References
1. Born J. Das Gelbe vom Ei und dessen Quintessenz. raum&zeit 2001; 113.
2. Nawrocki WC. Die Quintessenz des Lebens. Lebens(t)räume 2003; 5.
3. K, Bennek J, Unger R. Reepithelialisierende Wirkung einer Ei-Öl-Creme. Chirurg Allg Z 2000; 1(6): 233–237.
4. Born J. La creme du ciel dental. GZM-Praxis und Wissenschaft 2002; 7(2).
5. PC, Bereiter-Hahn J. Epithelial cells in culture: injured or differentiated cells? Cell Biol Int 2012; 36: 771–777.
<https://doi.org/10.1042/CBI20120060>
6. H, Hütter E, Voglauer R. Identification of cultivation-independent markers of human endothelial cell senescence in vitro. Biogerontology 2007; 8: 383–397.
<https://doi.org/10.1007/s10522-007-9082-x>
7. Bereiter-Hahn J. Do we age because we have mitochondria? Protoplasma June 2013: (Epub, PMID: 23794102).
8. DA, Havran W. Cross-talk between intraepithelial γδT cells and epithelial cells. J Leukocyte Biol 2013; 94: 69–76.
<https://doi.org/10.1189/jlb.0213101>
<PubMed>
9. P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 1988; 106: 761–771.
<https://doi.org/10.1083/jcb.106.3.761>
<PubMed>
10. Müller-Esterl W: Biochemie. Eine Einführung für Medziner und Naturwissenschaftler. 2. Aufl. Springer Verl. 2010. Chapter 30.6.
11. D. The biologic clock: the mitochondria? J Am Geriatric Soc 1972; 20: 145–147.
<https://doi.org/10.1111/j.1532-5415.1972.tb00787.x>
12. K, Kaeten M, Black AF, Damour O, Waldmann-Laue M, Förster T. Cosmetic efficacy claims in vitro using a three three-dimensional human skin model. International Journal of Cosmetic Science 2001; 23: 309–318.
<https://doi.org/10.1046/j.1467-2494.2001.00098.x>
13. A, Jonkman MF, Dijkman R, Ponec M. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes. J Investigative Dermatol 2005; 124: 79–86.
<https://doi.org/10.1111/j.0022-202X.2004.23549.x>
14. M, Mai S, Pohl S, Vöth M, Bereiter-Hahn J. Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress Mitochondrion 2008; 8: 293–304.
<https://doi.org/10.1016/j.mito.2008.06.001>
15. D, Aulbach A, Muster B, Dröse S, Jendrach M, Bereiter-Hahn J. Do UCP2 and mild uncoupling improve longevity? Exp Gerontol 2010; 45: 586–595.
<https://doi.org/10.1016/j.exger.2010.03.011>
16. H: Science, hormesis and regulation. Hum Exp Toxicol 2008; 27: 603–607.
<https://doi.org/10.1177/0960327108098493>
17. SIS: Hormesis in aging. Ageing Res Rev 2008; 7(1): 63–78.
<https://doi.org/10.1016/j.arr.2007.03.002>
18. M, Zarse K. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 2010; 45(6): 410–418.
<https://doi.org/10.1016/j.exger.2010.03.014>
19. VP. Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett 1991; 294: 158–162.
<https://doi.org/10.1016/0014-5793(91)80658-P>
20. O, Kalderon B, Bar-Tana J. Mitochondria uncoupling by a long chain fatty acyl analogue. J Biol Chem 1998; 273: 3937–3942.
<https://doi.org/10.1074/jbc.273.7.3937>
21. V, Wang X, Scherer PE, Chan CB, Wheeler MB. Mitochondrial functional state in clonal pancreatic ß-cells exposed to free fatty acids. J Biol Chem 2003; 278: 19709–19715.
<https://doi.org/10.1074/jbc.M209709200>
22. EA, Marinkovich MP, Peavey CL, et al. Hypoxia increases human keratinocyte motility on connective tissue. J Clin Invest 1997; 100: 2881–2891.
<https://doi.org/10.1172/JCI119837>
<PubMed>
23. R, Goebeler M. Chemokines in cutaneous wound healing. J Leukocyte Biol 2001; 60: 513–521.
24. G, Kemeny L, Peter RU, et al. Interleukin-8 receptor-mediated chemotaxis of normal human epidermal cells. FEBS Lett 1992; 305: 241–243.
<https://doi.org/10.1016/0014-5793(92)80677-9>
25. HO, Hansbrough JF, Kiessig V, Dore C, Sticherling M, Schröder J M. Bioactive interleukin-8 is expressed in wound and enhances wound healing. J. Surg. Res 2000; 93: 41–54.
<https://doi.org/10.1006/jsre.2000.5892>
26. D, Rüscher W, Myrtek D, et al. IL-6 and IL-8 release is mediated via multiple signaling pathways after stimulating dendritic cells with lysophospholipids. J Leukoc Biol 2006; 80: 287–297.
<https://doi.org/10.1189/jlb.1205751>
27. JA, Colleran KR, Remick DG, Gillespie BW, Ehrlich HP, Garner WL. Interleukin-8 levels and activity in delayed-healing human thermal wounds. Wound Rep Reg 2000; 8: 216–225.
<https://doi.org/10.1046/j.1524-475x.2000.00216.x>
28. T, Sugaya M, Blauvelt A, Okochi H, Sato S. Delayed wound healing due to increased interleukin-10 expression in mice with lymphatic dysfunction. J Leukoc Biol 2013; 94: 137–145.
<https://doi.org/10.1189/jlb.0812408>
29. TJ, Hughes MA, Cherry GW, Taylor RP. Evidence of oxidative stress in chronic venous ulcers. Wound Repair Regen 2003; 11(3): 172–176.
<https://doi.org/10.1046/j.1524-475X.2003.11304.x>
30. R, Nasole E, Di Donato F, Borghi B, Neuzil J, Tomasetti M. α-Lipoic acid supplementation inhibits oxidative damage accelerating chronic wound healing in patients undergoing hyperbaric oxygen therapy. Biochem Biophys Res Comm 2005; 333: 404–410.
<https://doi.org/10.1016/j.bbrc.2005.05.119>
31. R, Hilton JR, Waddington RJ, Harding KG, Stephens P, Thomas DW. Comparison of oxidative stress biomarker profiles between acute and chronic wound environments. Wound Repair Regen 2004; 12(4): 419–29.
<https://doi.org/10.1111/j.1067-1927.2004.12406.x>
32. S, DiPietro LA. Factors affecting wound healing. J Dent Res 2010; 890(3): 219–229.
<https://doi.org/10.1177/0022034509359125>
<PubMed>


