Acta Med. 2013, 56: 142-149

https://doi.org/10.14712/18059694.2014.9

THE EFFECT OF FETAL CALF SERUM ON HUMAN DENTAL PULP STEM CELLS

Jakub Sucháneka, Tereza Suchánková Kleplováa, Martin Kapitána, Tomáš Soukupb

aCharles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic: Department of Dentistry
bCharles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic: Department of Histology and Embryology

References

1. Minguel JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med, 2001; 226: 507–20. <https://doi.org/10.1177/153537020122600603>
2. Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood, 2001; 9(98): 2615–25. <https://doi.org/10.1182/blood.V98.9.2615>
3. Werntz JR, Lane JM, Burstein AH, et al. Qualitative and quantitative analysis of orthotopic bone regeneration by marrow. J Orthop Res, 1996; 14(1): 85–93. <https://doi.org/10.1002/jor.1100140115>
4. Patricia A, Zuk AP, Zhu M, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002; 13(12): 4279–95.
5. Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 2003; 102(4): 1548–49. <https://doi.org/10.1182/blood-2003-04-1291>
6. Campagnoli C, Roberts IAG, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 2001; 98(8): 2396–02. <https://doi.org/10.1182/blood.V98.8.2396>
7. Nakahara H, Dennis JE, Bruder SP, et al. In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp Cell Res, 1991; 195(2): 492–503. <https://doi.org/10.1016/0014-4827(91)90401-F>
8. Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 2004; 364(9429): 149–55. <https://doi.org/10.1016/S0140-6736(04)16627-0>
9. Gronthos S, Mankani M, Brahmin J, et al. Postnatal human dental pulp stem cells in vitro and in vivo. Proc Natl Acad Sci USA 2000; 97: 13625–30. <https://doi.org/10.1073/pnas.240309797> <PubMed>
10. Gronthos S, Mankani M, Brahmin J, et al. Stem cell properties of human dental pulp stem cells. J Dent Res, 2002, 81: 531–35. <https://doi.org/10.1177/154405910208100806>
11. Shi, S, Gronthos, S. Perivascular niché of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of Bone and Mineral Research 2003, 18 (4): 696. <https://doi.org/10.1359/jbmr.2003.18.4.696>
12. Miura M, Gronthos S, Zhao M, et al. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA, 2003; 100 (10): 5807–12. <https://doi.org/10.1073/pnas.0937635100> <PubMed>
13. Hilfiker A., Kasper C., Hass R., Haverich A. Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation? Langenbecks Arch Surg, 2011, 396, 489–497. <https://doi.org/10.1007/s00423-011-0762-2>
14. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A., Enikolopov GN, Frenette PS. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 2010, 466, 829–834. <https://doi.org/10.1038/nature09262> <PubMed>
15. Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal, 2011, 9, 1–14. <https://doi.org/10.1186/1478-811X-9-12> <PubMed>
16. Sotiropoulou P, Perez S, Salagianni M, et al. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem cells (Dayton, Ohio), 2006; 24(2): 462–71. <https://doi.org/10.1634/stemcells.2004-0331>
17. Sypniewska G, Xu XF, Hager A, et al. Effects of age, obesity and growth-hormone on adipogenic activity in human plasma. Int J Obes 1987; 11: 263–73.
18. Dictus C, Tronnier V, Unterberg A, et al. Comparative analysis of in vitro conditions for rat adult neural progenitor cells. J Neurosci Methods 2007; 161: 250–58. <https://doi.org/10.1016/j.jneumeth.2006.11.012>
19. Mannello F, Tonti G. Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold!. Stem cells (Dayton, Ohio). 2007; 25(7): 1603–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17395775. Accessed June 30, 2011. <https://doi.org/10.1634/stemcells.2007-0127>
20. Huang AH, Chen YK, Chan AW, et al. Isolation and characterization of human dental pulp stem/stromal cells from nonextracted crown-fractured teeth requiring root canal therapy. J Endod 2009 May; 35(5): 673–81 <https://doi.org/10.1016/j.joen.2009.01.019>
21. Gronthos S, Arthur A, Bartold PM, et al. A method to isolate and culture expand human dental pulp stem cells. Methods Mol Biol. 2011; 698: 107–21. doi: 10.1007/978-1-60761-999-4_9. <https://doi.org/10.1007/978-1-60761-999-4_9>
22. Ishkitiev N, Yaegaki K, Imai T, et al. High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium. J Endod. 2012 Apr; 38(4): 475–80. doi: 10.1016/j.joen.2011.12.011. Epub 2012 Ja. <https://doi.org/10.1016/j.joen.2011.12.011>
23. Suchánek J, Soukup T, Ivančaková R, et al. Human dental pulp stem cells – isolation and long term cultivation. Acta Medica (Hradec Králové). 2007; 50(3): 195–201. <https://doi.org/10.14712/18059694.2017.82>
24. Zheng X, Baker H, Hancock WS, et al. Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnol Prog 2006; 22: 1294–300. <https://doi.org/10.1021/bp060121o>
25. Gronthos S, Cherman N, Robey P, et al. Human dental pulp stem cells. Adult Stem Cells. Totowa, New Jersey: Humana Press, 2004: 37–51, 101–49.
26. Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002; 81 (8): 531–35. <https://doi.org/10.1177/154405910208100806>
27. van den Bos C, Mosca JD, Winkles J, et al. Human mesenchymal stem cells respond to fibroblast growth factors. Hum Cell 1997; 10: 45–50.
28. Tsutsumi S, Shimazu A, Miyazaki K, et al. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun 2001; 288: 413–19. <https://doi.org/10.1006/bbrc.2001.5777>
29. Sotiropoulou P, Perez S, Salagianni M, et al. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem cells (Dayton, Ohio). 2006; 24(2): 462–71. Available at: http://www.ncbi .nlm.nih.gov/pubmed/16109759. Accessed March 3, 2012. <https://doi.org/10.1634/stemcells.2004-0331>
30. Bernardo ME, et al. Ex vivo expansion of mesenchymal stromal cells. Best Pract Res Clin Haematol, 2011, 24, 73–81. <https://doi.org/10.1016/j.beha.2010.11.002>
31. Hatlapatka, T., et al. Optimization of culture conditions for the expansion of umbilical cord-derived mesenchymal stem or stromal cell-like cells using xeno-free culture conditions. Tissue Eng Part C Methods, 2011, 17, 485–493. <https://doi.org/10.1089/ten.tec.2010.0406>
32. Suchánek J, Soukup T, Víšek B, et al. Dental pulp stem cells and their characterization. Biomedical papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia. 2009; 153(1): 31–5. Available at: http://www.ncbi .nlm.nih.gov/pubmed/19365523. <https://doi.org/10.5507/bp.2009.005>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive