Acta Med. 2013, 56: 97-103
https://doi.org/10.14712/18059694.2014.16
SEALING ABILITY OF MINERAL TRIOXIDE AGGREGATE, CALCIUM PHOSPHATE CEMENT, AND GLASS IONOMER CEMENT IN THE REPAIR OF FURCATION PERFORATIONS
References
1. J Endod 1999; 25: 385–8.
< M, Chandra S. An evaluation of plaster of Paris barriers used under various materials to repair furcation perforations (in vitro study). https://doi.org/10.1016/S0099-2399(06)81177-5>
2. Oral Surg Oral Med Oral Pathol 1961; 14: 83–91.
< JI. A standardized endodontic technique utilizing newly designed instruments and filling materials. https://doi.org/10.1016/0030-4220(61)90477-7>
3. Odontol Revy 1970; 21: 51–62.
B, Persson PA. Periodontal tissue reactions after surgical treatment of root perforations in dogs’ teeth. A histologic study.
4. Endod Topics 2006; 13: 95–107.
< I, Fuss Z. Diagnosis and treatment of accidental root perforations. https://doi.org/10.1111/j.1601-1546.2006.00213.x>
5. Dent Clin North Am 1979; 23: 593–616.
RJ. Procedural accidents and their repair.
6. Int Endod J 2002; 35: 775–83.
< M, Baker M, Alves M, Daniel J, Remeikis N. Evaluation of healing with use of an internal matrix to repair furcation perforations. https://doi.org/10.1046/j.1365-2591.2002.00566.x>
7. Oral Surg Oral Med Oral Pathol 1994; 78: 368–74.
< HA. Root perforations. A review of literature. https://doi.org/10.1016/0030-4220(94)90070-1>
8. J Endod 1993; 19: 541–4.
< SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. https://doi.org/10.1016/S0099-2399(06)81282-3>
9. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1995; 79: 756–63.
< Ford TR, Torabinejad M, McKendry DJ, Hong C-U, Kariyawasam SP. Use of mineral trioxide aggregate for repair of furcal perforations. https://doi.org/10.1016/S1079-2104(05)80313-0>
10. J Endod 2010; 36: 400–13.
< M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review – Part III: Clinical applications, drawbacks, and mechanism of action. https://doi.org/10.1016/j.joen.2009.09.009>
11. J Prosthod 2006; 15: 321–8.
< AJ, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties. https://doi.org/10.1111/j.1532-849X.2006.00129.x>
12. Clin Oral Invest 2006; 10: 77–83.
< J, Ozer K, Reisshauer B-H, et al. Tissue responses to an experimental calcium phosphate cement and mineral trioxide aggregate as materials for furcation perforation repair: a histological study in dogs. https://doi.org/10.1007/s00784-005-0032-1>
13. J Mater Sci 1992; 3: 447–51.
H, Nicholson J. Studies on the structure of light-cured glass-ionomer cements.
14. Oral Surg Oral Med Oral Pathol 1993; 75: 362–6.
< HA, Himel VT. Evaluation of the sealing ability of amalgam, Cavit, and glass ionomer cement in the repair of furcation perforations. https://doi.org/10.1016/0030-4220(93)90152-T>
15. Oral Surg Oral Med Oral Pathol 1993; 76: 338–42.
< HA, Himel VT. Comparative study of the sealing ability of light-cured versus chemically cured materials placed into furcation perforations. https://doi.org/10.1016/0030-4220(93)90264-5>
16. Indian J Med Microbiol 2005; 23: 256–8.
M, Sequeira PS, Peter S, Bhat GK. Sterilisation of extracted human teeth for educational use.
17. Kohli A, Puttaiah R, Bedi R, et al. Infection Control & Occupational Safety Recommendations for Oral Health Professionals in India. 1st ed. New Delhi: Dental Council of India; 2007.
18. Endod Topics 2002; 1: 54–78.
< S. Considerations and concepts of case selection in the management of post‐treatment endodontic disease (treatment failure). https://doi.org/10.1034/j.1601-1546.2002.10105.x>
19. J Endod 2001; 27: 281–4.
< R, Filho JA, de Souza V, Nery MJ, Bernabe PF, Junior ED. Mineral trioxide aggregate repair of lateral root perforations. https://doi.org/10.1097/00004770-200104000-00011>
20. J Endod 1997; 23: 588–92.
< JY, Hutter JW, Mork TO, Nicoll BK. An in vitro study of furcation perforation repair using calcium phosphate cement. https://doi.org/10.1016/S0099-2399(06)81129-5>
21. J Clin Pediatr Dent 2009; 33: 305–10.
< N, Bhat SS, Hegde S. Sealing ability of ProRoot MTA and MTA-Angelus simulating a one-step apical barrier technique-an in vitro study. https://doi.org/10.17796/jcpd.33.4.gp472416163h7818>
22. J Endod 1999; 25: 197–205.
< M, Chivian N. Clinical applications of mineral trioxide aggregate. https://doi.org/10.1016/S0099-2399(99)80142-3>
23. Clin Oral Invest 2010; 14: 653–8.
< M, Eghbal MJ, Parirokh M, Abbas FM, Asgary S. Repair of furcal perforation using a new endodontic cement. https://doi.org/10.1007/s00784-009-0351-8>
24. J Endod 1999; 25: 811–3.
< C, Serper A, Dogan AL, Guc D. Evaluation of the cytotoxicity of calcium phosphate root canal sealers by MTT assay. https://doi.org/10.1016/S0099-2399(99)80303-3>
25. Dent Mater J 1995; 14: 45–57.
< K, Sugawara A, Murai S, Nishiyama M, Takagi S, Chow L. Histopathological reaction of calcium phosphate cement in periodontal bone defect. https://doi.org/10.4012/dmj.14.45>
26. Bull Mater Sci 2003; 26: 415–22.
< M, Varma H. Development of a fully injectable calcium phosphate cement for orthopedic and dental applications. https://doi.org/10.1007/BF02711186>
27. J Biomed Mater Res 2004; 29: 1537–43.
< K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. https://doi.org/10.1002/jbm.820291210>
28. Int Endod J 1991; 24: 223–32.
< BS, Pitt Ford TR, Watson TF. The adaptation and sealing ability of light-cured glass ionomer retrograde root fillings. https://doi.org/10.1111/j.1365-2591.1991.tb01148.x>
29. J Endod 1995; 21: 142–5.
< VT, Alhadainy HA. Effect of dentin preparation and acid etching on the sealing ability of glass ionomer and composite resin when used to repair furcation perforations over plaster of Paris barriers. https://doi.org/10.1016/S0099-2399(06)80440-1>
30. J Endod 1994; 20: 449–52.
< HA, Himel VT. An in vitro evaluation of plaster of Paris barriers used under amalgam and glass ionomer to repair furcation perforations. https://doi.org/10.1016/S0099-2399(06)80036-1>
31. J Endod 2001; 28: 512–15.
< MF, Saunders WP. In vitro evaluation of furcal perforation repair using mineral trioxide aggregate or resin modified glass ionomer cement with and without the use of the operating microscope. https://doi.org/10.1097/00004770-200207000-00006>
32. NJIRM 2013; 4: 56–9.
T, Shah N, Shah RR. Comparative analysis of sealing ability of biodentin and calcium phosphate cement against mineral trioxide aggregate (Mta) as a furcal perforation repair material (an in vitro study).