Acta Med. 2013, 56: 89-96

https://doi.org/10.14712/18059694.2014.15

LABORATORY EXAMINATION IN NERVE AGENT INTOXICATION

Jiří Bajgara,b

aUniversity of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic: Department of Toxicology
bUniversity of South Bohemia České Budějovice, Faculty of Social and Health Studies, Czech Republic: Department of Radiology and Toxicology

References

1. Bajgar J. The influence of inhibitors and other factors on cholinesterases. Sbor Ved Pr LFUK (Hradec Kralove) 1991; 34: 3–75.
2. Bajgar J. Biological monitoring of exposure to nerve agents. Brit J Ind Med 1992; 49: 648–653.
3. Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis and treatment. In: Makowsky GM, ed. Advances in Clinical Chemistry, vol. 38, Elsevier Academic Press, San Diego, CA, 2004: 151–216.
4. Bajgar J. Laboratory diagnosis of organophosphates/nerve agent poisoning. Klin Biochem Metab 2005; 13: 40–47
5. Bajgar J. Complex view on poisoning with nerve agents and organophosphates. Acta Medica (Hradec Králové) 2005; 48: 3–21. <https://doi.org/10.14712/18059694.2018.23>
6. Bajgar J, Schans van der MJ, Fusek J, et al. (2003): Biochemical effects of low level exposure to soman vapour(Final report). Cooperative project of TNO Prins Maurits Laboratory and Purkynĕ Military Medical Academy, Czech Republic. Assignment number A00D448. 2003, 41 pages incl. 2 Annexes.
7. Bajgar J, Fusek J, Bartosova L, Jun D, Kuca K. Evaluation of reactivation test in anaesthetized dogs with experimental intoxication with nerve agents. J Appl Toxicol 2006; 26: 439–443. <https://doi.org/10.1002/jat.1158>
8. Bao Y, Liu Q, Chen J, et al. Quantification of nerve agents adducts with albumin in rat plasma using liquid chromatorgaphy-isotope dilution tandem mass spectromtry. J Chromat A 2012; 1229: 164–171. <https://doi.org/10.1016/j.chroma.2012.01.032>
9. Barr JR, Driskell WJ, Aston LS, Martinez RA. Quantitation of metabolites of the nerve agents sarin, soman, cyclohexylsarin, VX and Russian VX in human urineusing isotope-dilution gas chromatography. J Analyt Toxicol 2004; 28: 372–378. <https://doi.org/10.1093/jat/28.5.372>
10. Bisschop de HC, De Meerleer WAP, Willems JL. Stereoselective phosphonylation of human serum proteins by soman. Biochem Pharmacol 1987; 36: 3587–3591. <https://doi.org/10.1016/0006-2952(87)90006-2>
11. Black RM. An overview of biological markers of exposure to chemical warfare agents. J Analyt Toxicol 2008; 32: 2–9. <https://doi.org/10.1093/jat/32.1.2>
12. Black RM, Read RW. Biological markers of exposure to organophosphorus nerve agents. Arch Toxicol 2013; 87: 421–437. <https://doi.org/10.1007/s00204-012-1005-1>
13. Bosak A, Katalinic M, Kovarik Z. Cholinesterases: structure, role, and inhibition. (in Croatian). Arch Indust Hyg Toxicol 2011; 62: 175–190.
14. Capacio BR, Smith R, Gordon RK, et al. Medical diagnostics. In: Lenhart MK, Tuorinski, SD, eds. Textbook in Military Medicine . Office of the Surgeon General, Department of the Army, United States of America and US Army Medical Department Center and School, Fort Sam Houston, San Antonio, TX 2008: pp. 691–752.
15. Carol-Visser J, van der Schans M, Fidder A, et al. Development of an automated on-line pepsin digestion-liquid chromatography-tandem mass spectrometry configuration for the rapid analysis of protein adducts of chemical warfare agents. J Chromat. B 2008; 870: 91–97. <https://doi.org/10.1016/j.jchromb.2008.06.008>
16. CWC: Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons and on their Destruction. OPCW 1994, 168 pages. OPCW, The Hague 1994.
17. Čolovič MB, Krstič DZ, Lazarevič-Pašu TD, Bondžič AM, Vasic VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 2013; 11: 315–335. <https://doi.org/10.2174/1570159X11311030006> <PubMed>
18. Darvesh S, Hopkins DA, Geula C. Neurobiology of butyrylcholinesterase. Nature Rev Neurosci 2003; 4: 131–138. <https://doi.org/10.1038/nrn1035>
19. Degenhardt CEAM, Pleijsier K, van der Schans MJ, et al. Improvement of the fluoride reactivation method for the verification of nerve agent exposure. J Analyt Toxicol 2004; 28: 364–371. <https://doi.org/10.1093/jat/28.5.364>
20. Driskell WJ, Shih M, Needham LL, Barr DB. Quantitation of organophosphorus nerve agent metabolites in human urine using isotope dilution gas chromatography-tandem mass spectrometry. J Analyt Toxicol 2002; 29: 6–10. <https://doi.org/10.1093/jat/26.1.6>
21. Ellman GL, Courtney DK, Anders V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7: 88–95. <https://doi.org/10.1016/0006-2952(61)90145-9>
22. Eyer F, Eyer P. Enzyme-based assay for quantification of paraoxon in blood of parathion poisoned patients. Hum Exp Toxicol 1998; 17: 645–651. <https://doi.org/10.1191/096032798678908107>
23. Fest C, Schmidt K-J. The chemistry of organophosphorus pesticides. Second Revised Edition., Berlin, Heidelberg, New York: Springer-Verlag 1982: 360.
24. Fidder A, Hulst AG, Noort D, de Ruiter R, van der Schans MJ, Benschop HP, Langenberg JP. Retrospective detection of exposure to organophosphorus anti-cholinesterases: mass spectrometric analysis of phosphylated human butyrylcholinesterase. Chem Res Toxicol 2002; 15: 582–590. <https://doi.org/10.1021/tx0101806>
25. Gupta, R.C., Editor. Handbook of Toxicology of Chemical Warfare Agents, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, Elsevier/AP, 2009, 1147 pages.
26. Haigh JR, Lefkowitz IJ, Capacio BR, Doctor BP, Gordon RK. Advantages of the WRAIR whole blood cholinesterase assay: comparative analysis to the micro-Ellman, Test-mate ChETM, and Michel (ΔpH) assays. Chem-Biol Interact 2008; 175: 417–420. <https://doi.org/10.1016/j.cbi.2008.04.032>
27. Halámek E, Kobliha Z. Potenciální bojové chemické látky. Chem listy 2011; 105: 323–333.
28. Heath DF. Organophosphorus poisons. Anticholinesterases and related compounds. In: Alexander P, Bacq ZM, eds. Modern trends in physiological sciences. Pergamon Press, Oxford, London, New York, Paris, 1961: 241.
29. Jokanovic M. Current understanding of the mechanisms involved in metabolit detoxification of warfare nerve agents. Toxicol Lett 2009; 188: 1–10. <https://doi.org/10.1016/j.toxlet.2009.03.017>
30. Jun D, Bajgar J, Kuca K, Kassa J. Monitoring of blood cholinesterase activity in workers exposed to nerve agents. In: Gupta RC, ed. Handbook of Toxicology of Chemical Warfare Agents, Elsevier/AP, 2009: 877–886.
31. Knaack JS, Zhou Y, Abrey CW, et al. A high-throughput diagnostic method for measuring human exposure to organophosphorus nerve agents. Analyt Chem 2012; 84: 9470–9477. <https://doi.org/10.1021/ac3025224>
32. Kassa J, Kuca K. Exposure to organophosphorus compounds – oximes, neuroprotection and cognitive functions. In: The neurochemical consequences of organophosphate poisoning in the CNS. Weissman BA, Raveh L. eds. TRN, Kera­la, India 2010: 77–91.
33. Li B, Eyer P, Eddleston M, et al. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos. Toxicol Appl Pharmacol 2013; 269: 215–225. <https://doi.org/10.1016/j.taap.2013.03.021> <PubMed>
34. Lockridge O, Masson P. Pesticide and susceptible populations: people with butyrylcholinesterase genetic variants may be at risk. Neurotoxicology 2000; 21: 113–126.
35. Lockridge O, Schopfer LM, Masson P. Biomarkers of exposure to organophosphorus poisons: a new motif for covalent binding to tyrosine in proteins that have no active site serine. In: Gupta RC, ed. Handbook of Toxicology of Chemical Warfare Agents, Elsevier/AP, 2009: 847–858.
36. Marrs TC, Maynard RL, Sidell FS. Chemical warfare agents. Toxicology and treatment. J. Wiley and Sons, Chicester, New York, Brisbane, Toronto, Singapore 1996, 243 pages.
37. Massoulié J, Pezzementi L, Bon S, Krejci E, Vallette FM. Molecular and cellular biology of cholinesterases. Progr Neurobiol 1993; 41: 31–91. <https://doi.org/10.1016/0301-0082(93)90040-Y>
38. Meer van der JA, Trap HC, Noort D, Schans van der MJ. Comprehensive gas chromatography with Time of Flight MS and large volume introduction for the detection of fluoride-induced regenerated nerve agent in biological samples. J Chromat B 2010; 878: 1320–1325. <https://doi.org/10.1016/j.jchromb.2010.02.019>
39. Myers DK. Cholinesterase. VII. Determination of the molar concentration of pseudocholinesterase in serum. Biochem J 1952; 51: 303–311. <https://doi.org/10.1042/bj0510303> <PubMed>
40. Nagao M, Takatori T, Matsuda Y, et al. Definitive evidence for the acute sarin poisoning diagnosis in the Tokyo subway. Toxicol Appl Pharmacol 1997; 144: 198–203. <https://doi.org/10.1006/taap.1997.8110>
41. Nagayama M, Akahori F, Chiwata H, et al. Effects of selected organophosphate insecticides on serum cholinesterase isoenzyme patterns in the rat. Vet Hum Toxicol 1996; 38: 196–199.
42. Noort D, Benschop HP, de Jong LPA. Methods for retrospective detection of exposure to toxic scheduled chemicals: an overview. Voj zdrav Listy 2001; 70: 14–17.
43. Noort D, van der Schans MJ, Bikker FJ, Benschop HP. Diagnosis of exposure to chemical warfare agents: an essential tool to counteract chemical terrorism. In: Dishovsky C, Pivovarov A, eds. Counteraction to Chemical and Biologicalv Terrorism in East European Countries. Book Series: NATO Science for Peace and Security Series A -Chemistry and Biology, 2009: 195–201.
44. Patočka, J. et al. Vojenská toxikologie. Praha, Grada-Avicenum, 2004: 178 pages (in Czech).
45. Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed Papers 2011; 155: 219–230. <https://doi.org/10.5507/bp.2011.036>
46. Polhuis M, Langenberg JP, Benschop HP. New method for retrospective detection of exposure to organophosphorus anticholinesterases: application to alleged sarin victims of Japanese terrorists. Toxicol Appl Pharmacol 1997; 146: 156–161. <https://doi.org/10.1006/taap.1997.8243>
47. Sakaguchi K, Nagayama M, Masaoka T, et al. Effects of fenthion, isoxathion, dichlorvos and propaphos on the serum cholinesterase patterns of dogs. Vet Hum Toxicol 1997; 39: 1–5.
48. Schans van der MJ, Noort D, Fidder A, Degenhardt CEAM, et al. Retrospective detection of exposure to organophosphorus anticholinesterases: fluoride reactivation and mass spectrometric analysis of phosphylated human butyrylcholinesterase. The meeting of NATO TG 004 Task Group on Prophylaxis and Therapy of Chemical Agents. 4–7 November 2002, Oslo, Norway.
49. Schans van der MJ Laboratory analysis of chemical warfare agents and metabolites in biomedical samples. In: Gupta RC, ed. Handbook of Toxicology of Chemical Warfare Agents, Elsevier/AP, 2009: 827–835.
50. Schopler LM, Lockdridge O. Analytical approaches for monitoring exposure to organophosphorus and carbamate agents through analysis of protein adducts. Drug Test Anal 2012; 4: 246–261. <https://doi.org/10.1002/dta.1325>
51. Shih ML, McMonagle JD, Dolzine TW, Gresham WC. Metabolite pharmacokinetics of soman, sarin and GF in rats and biological monitoring of exposure to toxic otrganophosphorus agents. J Appl Toxicol 1994; 14: 195–199. <https://doi.org/10.1002/jat.2550140309>
52. Stefanidou M, Athanaselis S, Spiliopoulou H. Butyrylcholinesterase: biomarker for exposure to organophosphorus insecticides. Int Med J 2009; 39: 57–60. <https://doi.org/10.1111/j.1445-5994.2008.01779.x>
53. Středa L, Patočka J. Zneschopňující chemické látky – ohrožení účelu a cíle Úmlu­vy o zákazu chemických zbraní. Kontakt 2013, in press.
54. Swaim LL, Johnson RC, Zhou Y, Sandlin C, Barr JR. Quantification of organophosphorus nerve agent metabolites using a reduced-volume, high-throughout sample processing format and liquid chromatography-tandem mass spectrometry. J Analyt Toxicol 2008; 32: 774–777. <https://doi.org/10.1093/jat/32.9.774>
55. Thiermann H, Szinicz L, Eyer P, Zilker T, Worek F. Correlation between red blood cell acetylcholinesterase activity and neuromuscular transmission in organophosphate poisoning. Chem-Biol Interact 2005; 157–158: 345–347. <https://doi.org/10.1016/j.cbi.2005.10.102>
56. Thiermann H, Kehe K, Steinritz D, Mikler J, Hill I, Zilker T, Eyer P, Worek F. Red blood cell acetylcholinesterase and plasma butyrylcholinesteras status: important indicators for the treatment of patients poisoned by organophosphorus compounds. Arh Hig Rada Toksikol 2007; 58: 359–366. <https://doi.org/10.2478/v10004-007-0030-6>
57. Vale A, Marrs TC, Rice P. Chemical terrorism and nerve agents. Medicine 2012; 40: 77–79. <https://doi.org/10.1016/j.mpmed.2011.11.017>
58. Voicu V, Bajgar J, Medvedovici A, Radulescu FS, Miron DS. Pharmacokinetics and pharmacodynamics of some oximes and associated therapeutic consequences: a critical review. J Appl Toxicol 2010; 30: 719–729. <https://doi.org/10.1002/jat.1561>
59. Voicu V, Radulescu FS, Medvedovici A. Toxicological considerations of acetylcholinesterase reactivators. Exp Opin Drug Metab Toxicol 2013; 9: 31–50. <https://doi.org/10.1517/17425255.2013.736489>
60. Whittaker M. Plasma cholinesterase variants and the anaesthesist. Anaesthesia 1980; 35: 174–197. <https://doi.org/10.1111/j.1365-2044.1980.tb03800.x>
61. Wiesner J, Kriz Z, Jun D, Kuca, K. Acetylcholinesterase – the structural similarities and differences. J Enz Inhib Med Chem 2007; 22: 417–424. <https://doi.org/10.1080/14756360701421294>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive