Acta Med. 2013, 56: 23-28
https://doi.org/10.14712/18059694.2014.34
THE EFFECT OF L-CARNOSINE ON ERYTHROCYTE DEFORMABILITY AND AGGREGATION ACCORDING TO THE CELL AGE IN YOUNG AND AGED RATS
References
1. Clin Hemorheol Microcirc 2008; 39(1–4): 93–98.
S, Yapislar H, Artis S, Aydogan B. Impaired erythrocytes deformability in H2O2-induced oxidative stress: protective effect of L-carnosine.
2. Clin Hemorheol Microcirc 2005; 33(4): 363–67.
M, Meiselman HJ, Başkurt OK. Modulation of density-fractionated RBC deformability by nitric oxide.
3. Chien S. The red blood cell: biophysical behavior of red cells in suspensions. In Surgenor DM, ed. The red blood cell. New York: Academic Press, 1975: 1031.
4. Annual Review of Physiology 1987; 49: 177–92.
< S. Red Cell Deformability and its Relevance to Blood Flow. https://doi.org/10.1146/annurev.ph.49.030187.001141>
5. Int J Cardiol 2007; 116: 14–19.
< R, Gur M, Yilmaz R, Kunt AS, Erel O, Andac MH. Influence of oxidative stress on the development of collateral circulation in total coronary occlusions. https://doi.org/10.1016/j.ijcard.2006.02.012>
6. Clin Biochem 2004; 37: 112–19.
< O. A novel automated method to measure total antioxidant response against potent free radical reactions. https://doi.org/10.1016/j.clinbiochem.2003.10.014>
7. Clin Biochem 2005; 38: 1103–11.
< O. A new automated colorimetric method for measuring total oxidant status. https://doi.org/10.1016/j.clinbiochem.2005.08.008>
8. Curr Med Chem 2005; 12(20): 2293–315.
< A, Calderan A, Ruzza P, Borin G. L-carnosine and L-carnosine-related antioxidants: A review. https://doi.org/10.2174/0929867054864796>
9. Ann NY Acad Sci 2000; 899: 136–47.
< JM, Halliwell B. Free radicals and antioxidants in the year 2000. A historical look to the future. https://doi.org/10.1111/j.1749-6632.2000.tb06182.x>
10. Clin Hemorheol 1994; 14: 605–18.
MR, Goedhart PT, Dobbe JGG, Lettinga KP. Laser-assisted optical rotational cell analyzer (LORCA). 1. A new instrument for measurement of various structural hemorheological parameters.
11. Clin Hemorheol Microcirc 2001; 25: 1–11.
MR, Dobbe JG, Ince C. The Laser-assisted Optical Rotational Cell Analyzer (LORCA) as red blood cell aggregometer.
12. Int J Biochem Cell Biol 1998; 30(8): 863–68.
< AR. L-carnosine, a protective, anti-ageing peptide? https://doi.org/10.1016/S1357-2725(98)00060-0>
13. Cell Mol Life Sci 2000; 57(5): 747–53.
< AR, Brownson C. A possible new role for the anti-ageing peptide L-carnosine. https://doi.org/10.1007/s000180050039>
<PubMed>
14. Current Science 2002; 82: 191–96.
S, Singh M. Changes in erythrocyte aggregation and deformability during human ageing.
15. Toxicol Mech Methods 2009; 19(1): 19–23.
< V, Bor-Kucukatay M, Kocamaz E, Erken G. Effect of Sulfite Treatment on Erythrocyte Deformability in Young and Aged Rats. https://doi.org/10.1080/15376510802175788>
16. Mech Ageing Dev 1988; 42(1): 37–47.
< M, Rossi L, Stocchi V, Cucchiarini L, Piacentini G, Fornaini G. Effect of age on some properties of mice erythrocytes. https://doi.org/10.1016/0047-6374(88)90061-9>
17. Semin Hematol 1983; 20: 225–42.
N, Chasis JA, Shohet SB. The influence of membrane skeleton on red cell deformability, membrane material properties and shape.
18. Biophys J 1983; 43: 63–73
< GB, Meiselman HJ. Red cell and ghost viscoelasticity, effects of hemoglobin concentration and in vivo aging. https://doi.org/10.1016/S0006-3495(83)84324-0>
<PubMed>
19. Mech Ageing Dev 1997; 97(1): 73–79.
< HB. The effect of donor age on human erythrocyte density distribution. https://doi.org/10.1016/S0047-6374(97)01885-X>
20. Turk Kardiyol Dern Ars 2008; 36(8): 536–540.
M, Demirbağ R, Sezen Y et al. Plasma and tissue oxidative stress index in patients with rheumatic and degenerative heart valve disease.
21. J Appl Physiol 2005; 99(4): 1434–41.
< UK, Gündüz F, Kuru O et al. Exercise-induced oxidative stress leads hemolysis in sedentary but not trained humans. https://doi.org/10.1152/japplphysiol.01392.2004>
22. Crit Rev Oncol Hematol 1990; 10(1): 9–48.
< T, Maeda N, Kon K. Erythrocyte rheology. https://doi.org/10.1016/1040-8428(90)90020-S>
23. Clin Hemorheol Microcirc 2000; 23(1): 13–21.
MA, Bilto YY, Juma M, Irhimeh MR. Exposure of human erythrocytes to oxygen radicals causes loss of deformability, increased osmotic fragility, lipid peroxidation and protein degradation.
24. Blood Rev 1990; 4: 141–147
< J, Nash GB. Red cell deformability and hematological disorders. https://doi.org/10.1016/0268-960X(90)90041-P>
25. Klin Wochenschrift 1980; 58: 569–74.
< W, Levin C, Prindull G, Schröter W. Rheological properties of young and aged human erythrocytes. https://doi.org/10.1007/BF01477168>
26. Clin Hemorheol 1989; 9: 999–1007.
MG, Fedele F, Tozzi E et al. Age dependent changes in human erythrocyte properties.
27. Turk J Hematol 2002; 19(2): 303–308.
E, Yalçın Ö, Başkurt OK. Effect of Donor Age on the Deformability and Aggregability of Density-Separated Red Blood Cells.
28. Age 1991; 14(3): 73–77.
< KA, Baker C, Roebuck L, Wickline K, Schwartz RW. Red blood cell deformability: Effect of age and smoking. https://doi.org/10.1007/BF02434093>
29. Blood 1992; 79(5): 1351–8.
< RE, Narla M, Jackson CW, Mueller TJ, Suzuki T, Dale GL. Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age. https://doi.org/10.1182/blood.V79.5.1351.1351>
30. J Appl Physiol 2003; 95: 1706–16.
< BT and Timiras PS. Invited review: Theories of aging. https://doi.org/10.1152/japplphysiol.00288.2003>