Acta Med. 2012, 55: 153-159

https://doi.org/10.14712/18059694.2015.39

Predictors of Irinotecan Toxicity and Efficacy in Treatment of Metastatic Colorectal Cancer

Adam Paulík, Jiří Grim, Stanislav Filip

Charles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Czech Republic: Department of Oncology and Radiotherapy

Received February 13, 2012
Accepted November 3, 2012

References

1. Adam R, Delvart V, Pascal G et al. Rescue surgery for unresectable colorectal liver metastases downstaged by chemotherapy: a model to predict long-term survival. Ann Surg 2004; 240: 644–57. <https://doi.org/10.1097/01.sla.0000145964.08365.01> <PubMed>
2. André T, Boni C, Navarro M et al. Improved overall survival with oxaliplatin, fluorouracil and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. Journal of Clinical Oncology 2009; 27: 3109–16. <https://doi.org/10.1200/JCO.2008.20.6771>
3. Barbier O, Girarad H, Inoue Y et al. Hepatic expression of the UGT1A9 gene is governed by hepatocyte nuclear factor 4alpha. Mol Pharmacol 2005; 67: 241–49. <https://doi.org/10.1124/mol.104.003863>
4. Beutler E, Gelbart T, Demina A. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Acad Sci USA 1998 Jul 7; 95(14): 8170–74. <https://doi.org/10.1073/pnas.95.14.8170> <PubMed>
5. Boyle P, Langman J S. ABC of colorectal cancer: Epidemiology. BMJ 2000; 321(7264): 805–8. <https://doi.org/10.1136/bmj.321.7264.805> <PubMed>
6. Bret D Wallace, Hongwei Wang, Kimberley T Lane et al. Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme. Science 2010 Nov 5; Vol. 330, no. 6005: 831–5.
7. De Gramont A, Figer A, Seymour M et al. Leucovorin and fluorouracil wit or without oxaliplatin as first-line treatment in advanced colorectal cancer. Journal of Clinical Oncology 2000; 18: 2938–47. <https://doi.org/10.1200/JCO.2000.18.16.2938>
8. Douillard JY, Cunningham D, Roth AD et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 2000; 355: 1041–1047. <https://doi.org/10.1016/S0140-6736(00)02034-1>
9. Dušek L, Mužík J, Babjuk M et al. Populační odhady počtu nemocných s kolorektálním karcinomem v ČR – jeden z nástrojů hodnocení včasné diagnostiky časných stadií a rekurence onemocnění. Farmakoterapie 2009; 5: 11–20.
10. Floris A de Jong, Maja JA de Jonge, Jaap Verweij, Ron HJ Mathijssen. Role of pharmacogenetics in irinotecan therapy. Cancer Letters 2006; 234: 90–106.
11. Floris A de Jong, van der Bol JM, Mathijssen RH et al. Renal function as a predictor of irinotecan-induced neutropenia. Clin Pharmacol Ther. 2008 Aug; 84(2): 254–62.
12. Fujiwara Y, Sekine I, Ohe Y et al. Serum total bilirubin as a predictive factor for severe neutropenia in lung cancer patients treated with cisplatin and irinotecan. Jpn J Clin Oncol 2007; 37(5): 358–64. <https://doi.org/10.1093/jjco/hym033>
13. Gagne JF, Montminy V, Belanger P, Journault K, Gaucher G, Guillemette C et al. Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol Pharmacol 2002; 62: 608–17. <https://doi.org/10.1124/mol.62.3.608>
14. Garcia J, Jemal A, Ward EM et al. Global cancer facts and figures 2007, Atlanta, GA: American cancer society, 2007.
15. Haaz M-C, Riché C, Rivory LP, Robert J. Biosynthesis of an aminopiperidino metabolite of irinotecan [7-ethyl-10-[4-(1-piperidino] carbonyloxycamptothecine] by human hepatic microsomes. Drug Metabolism and Disposition 1998; 26: 769–74.
16. Scheme adjusted according to Hahn K, Wolff J, Kolesa J. Pharmacogenetics and Irinotecan Therapy. American Journal of Health-System Pharmacy. 2006; 63(22): 2211–17. <https://doi.org/10.2146/ajhp060155>
17. Hoskins JM, Goldberg RM, Qu P, Ibrahim JG, McLeod HL. UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst 2007; 99: 1290–5. <https://doi.org/10.1093/jnci/djm115>
18. Charasson V, Bellott R, Meynard D, Longy M, Gorry P, Robert J. Pharmacogenetics of human carboxylesterase 2, an enzyme involved in the activation of irinotecan into SN-38. Clin Pharmacol Ther 2004; 76: 528–35. <https://doi.org/10.1016/j.clpt.2004.08.007>
19. Innocenti F, Karrison T, Ramirez J et al. Effect of coadministration of statins on neutropenia in a phase I genotype-directed dose-escalation study of irinotecan. Journal of Clinical Oncology 2010; 28(suppl May 20): 3020. <https://doi.org/10.1200/jco.2010.28.15_suppl.3020>
20. Innocenti F, Ratain MJ. Irinotecan treatments in cancer patients with UGT1A1 polymorphisms. Oncology 2003; 17(suppl 5): 52–5.
21. Innocenti F, Undevia SF, Iyer L et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. Journal of Clinical Oncology 2004; 22(8): 1382–8. <https://doi.org/10.1200/JCO.2004.07.173>
22. Jinno H, Saeki M, Saito Y et al. Functional characterization of human UDP-glucuronosyltransferase 1A9 variant, D256N, found in Japanese cancer patients. J Pharmacol Exp Ther 2003; 306: 688–93. <https://doi.org/10.1124/jpet.103.051250>
23. Kramar A, Gourgou-Bourgade S, Ychou M. Relationship of serum bilirubin to toxicity in patiens with metastatic colorectal cancer treated with single-agent high-dose irinotecan. Journal of Clinical Oncology 2004; 23(3): 650. <https://doi.org/10.1200/JCO.2005.05.163>
24. Labianca R, Pessi MA, Zamparelli G. Treatment of colorectal cancer. Current guidelines and future prospects for drug therapy. Drugs 1997; 53: 593–607. <https://doi.org/10.2165/00003495-199753040-00005>
25. Levesque E, Bélanger A, Coutore F et al. The contribution of UGT1A and ABCB1 to irinotecan-induced toxicity: A prospective pharmacogenetic study of patients with metastatic colorectal cancer. J Clin Oncol 2010; 28(suppl, abstr 3101). <https://doi.org/10.1200/jco.2010.28.15_suppl.3101>
26. Lin YS, Dowling AL, Quigley SD, Farin FM, Zhang J, Lamba J. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002; 62: 162–72. <https://doi.org/10.1124/mol.62.1.162>
27. Marsh S, Xiao M, Yu J et al. Pharmacogenomic assesment of carboxylesterases 1 and 2. Genomics 2004; 84: 661–8. <https://doi.org/10.1016/j.ygeno.2004.07.008>
28. Mathijssen RH, de Jong FA, van Schaik RH et al. Prediction of irinotecan pharmacokinetics by use of cytochrome P4503A4 phenotyping probes. J Natl Cancer Inst 2004; 96: 1585–92. <https://doi.org/10.1093/jnci/djh298>
29. Mathijssen RH, van Alphen RJ, Verweij J et al. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 2001; 7: 2182–94.
30. Michael M, Brittain M, Nagai J et al. Phase II study of activated charcoal to prevent irinotecan-induced diarrhea. J Clin Oncol 2004; 22: 4410–7. <https://doi.org/10.1200/JCO.2004.11.125>
31. Mirkov S, Komorski BJ, Ramirez J et al. Effects of green tea compounds on irinotecan metabolism. Drug Metabolism and Disposition 2007; 35: 228–33. <https://doi.org/10.1124/dmd.106.012047>
32. Onoue M, Terada T, Kobayashi M et al. UGT1A1*6 polymorphism is most predictive of severe neutropenia induced by irinotecan in Japanese cancer patiens. International Journal of Clinical Oncology 2009; 14: 136–42. <https://doi.org/10.1007/s10147-008-0821-z>
33. Parodi L, Pickering E, Cisar LA, Lee D, Soufi-Mahjoubi R. Utility of pretreatment bilirubin level and UGT1A1 polymorphisms in multivariate predictive model sof neutropenia associated with irinotecan treatment in previously untreated patiens with colorectal cancer. Archives of Drug Information 2008; 1: 97–106. <https://doi.org/10.1111/j.1753-5174.2008.00014.x> <PubMed>
34. Saltz LB, Niedzwiecki D, Hollis D et al. Irinotecan fluorouracil plus leucovorin is not superior to fluorouracil plus leucovorin alone as adjuvant treatment for stage III colon cancer: Results of CALGB 89803. Journal of Clinical Oncology 2007; 25: 3456–61. <https://doi.org/10.1200/JCO.2007.11.2144>
35. Senter PD, Beam KS, Mixan B, Wahl AF. Identification and activities of human carboxylesterases for the activation of CPT-11, a clinically approved anticancer drug. Bioconjug Chem 2001; 12: 1074–80. <https://doi.org/10.1021/bc0155420>
36. Spareeboom A, Danesi R, Ando Y, Chan J, Figg WD. Pharmacogenomics of ABC transporters and its role in cancer chemotherapy. Drug Resisct Updat 2003; 6: 71–84. <https://doi.org/10.1016/S1368-7646(03)00005-0>
37. Strassburg CP. Gilbert-Meulengrachts’s syndrome and pharmacogenetics: is jaundice just the tip of iceberg? Drug Metab Rev 2010; 42: 162–75. <https://doi.org/10.3109/03602530903209429>
38. Strassburg CP. Hyperbilirubinemia syndromes (Gilbert-Meulengracht, Crigler- Najar, Dubin-Johnson and Rotor syndrome). Best Practise and Research Clinical Gastroenterology 2010; 24: 555–71. <https://doi.org/10.1016/j.bpg.2010.07.007>
39. Takeuchi K, Kobayashi Y, Tamaki S et al. Genetic polymorphisms of bilirubin uridine diphosphate-glucuronosyltransferase gen in Japanese patiens with Crigler- Najar syndrome or Gilbert’s syndrome as well as in healthy Japanese subjects. J Gastroenterol Hepatol 2004; 19: 1023–8. <https://doi.org/10.1111/j.1440-1746.2004.03370.x>
40. Thummel KE, Lamba JK, Lin YS, Schuetz EG. Genetic contribution to viable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002; 54: 1271–94.
41. Tournigand C, André T, Achille E et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. Journal of Clinical Oncology 2004; 22(2): 229–37. <https://doi.org/10.1200/JCO.2004.05.113>
42. ÚZIS ČR, Aktuální informace, Zhoubné nádory v roce 2009 (released 24/01/2012). (Accessed at www.uzis.cz/system/files/02_12.pdf.)
43. Van Cutsem E, Labianca R, Bodoky G et al. Randomized phase III trial comparing biweekly infusional fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of stage III colon cancer: PETACC-3. Journal of Clinical Oncology 2009; 27: 3117–25. <https://doi.org/10.1200/JCO.2008.21.6663>
44. Van Es HH, Bout A, Liu J et al. Assignment of the human UDP glucuronosyl- transferase gene (UGT1A1) to chromosome region 2q37. Cytogenet Cell Genet 1993; 63: 114–6. <https://doi.org/10.1159/000133513>
45. Vogel A, Kneip S, Barut A et al. Genetic link of hepatocellular carcinoma with polymorphisms of the UDP-glucuronosyl-transferase UGT1A7 gene. Gastroenterology 2001; 121: 1136–44. <https://doi.org/10.1053/gast.2001.28655>
46. World Cancer Research Fund and American Institute for Cancer Research Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. 1st ed. Washington DC. American Institute for Cancer Research, 2007.
47. Wu MH, Chen P, Wu X et al. Determination and analysis of single nucleotide polymorphisms and haplotype structure of the human carboxylesterase 2 gene. Pharmacogenetics 2004; 14: 595–605. <https://doi.org/10.1097/00008571-200409000-00004>
48. Wu MH, Yan B, Humerickhouse R, Dolan ME. Irinotecan activation by human carboxylesterases in colorectal adenocarcinoma cells. Clin Cancer Res 2002; 8: 2696–2700.
49. Ychou M, Raoul JL, Douilliard JY et al. A phase III randomised trial of LV5FU2 + irinotecan versus LV5FU2 alone in adjuvant high-risk colon cancer (FNCLCC Accord02/FFCD9802). Ann Oncol 2009; 674–80. <https://doi.org/10.1093/annonc/mdn680>
50. Zhe-Yi Hu, Qi Yu, Yuan-Sheng Zhao. Dose-dependent association between UGT1A1*28 polymorphism and irinotecan-induced diarrhoea: a meta-analysis. European journal of cancer 2010; 46: 1856–65.
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive