Acta Med. 2012, 55: 91-95

https://doi.org/10.14712/18059694.2015.62

The Number of Immunoregulatory T Cells is Increased in Patients with Psoriasis after Goeckerman Therapy

Kateřina Kondělkováa, Doris Vokurkováa, Jan Krejseka, Lenka Borskáb, Zdeněk Fialac, Květoslava Hamákovád, Ctirad Andrýsa

aCharles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Czech Republic: Department of Clinical Immunology and Allergology
bCharles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Czech Republic: Department of Pathological Physiology
cCharles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Czech Republic: Department of Hygiene and Preventive Medicine
dCharles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Czech Republic: Department of Dermatology and Venerology

Received November 16, 2011
Accepted June 1, 2012

References

1. Battaglia M, Gregori S, Bacchetta R, Roncarolo M-G. Tr1 cells: from discovery to their clinical application. Semin Immunol 2006; 18(2): 120–7. <https://doi.org/10.1016/j.smim.2006.01.007>
2. Bevelacqua V, Libra M, Mazzarino MC et al. Long pentraxin 3: a marker of inflammation in untreated psoriatic patients. Int J Mol Med 2006; 18: 415–23.
3. Bisikirska B, Colgan J, Luban J, Bluestone JA, Herold KC. TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J Clin Invest 2005; 115(10): 2904–13. <https://doi.org/10.1172/JCI23961> <PubMed>
4. Borska L, Andrys C, Krejsek J et al. Genotoxic and apoptotic effects of Goeckerman therapy for psoriasis. Int J Dermatol 2010; 49: 289–94. <https://doi.org/10.1111/j.1365-4632.2009.04258.x>
5. Bovenschen HJ, van Vlijmen-Willems IM, van de Kerkhof PC, van Erp PE. Identification of lesional CD4+ CD25+ Foxp3+ regulatory T cells in Psoriasis. Dermatology 2006; 213(2): 111–7. <https://doi.org/10.1159/000093849>
6. Chen L, Shen Z, Wang G, Fan P, Liu Y. Dynamic frequency of CD4+CD25+Foxp3+ Treg cells in Psoriasis vulgaris. J Dermatol Sci 2008; 51(3): 200–3. <https://doi.org/10.1016/j.jdermsci.2008.04.015>
7. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005; 22(3): 329–41. <https://doi.org/10.1016/j.immuni.2005.01.016>
8. Fontenot JD, Rudensky A. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 2005; 6(4): 331–7. <https://doi.org/10.1038/ni1179>
9. Furuhashi T, Torii K, Kato H, Nishida E, Saito C, Morita A. Efficacy of excimer light therapy (308 nm) for palmoplantar pustulosis with the induction of circulating regulatory T cells. Exp Dermatol 2001; 20(9): 768–70. <https://doi.org/10.1111/j.1600-0625.2011.01316.x>
10. Gao L, Li K, Li F et al. Polymorphisms in the FOXP3 gene in Han Chinese psoriasis patients. J Dermatol Sci 2010; 57(1): 51–6. <https://doi.org/10.1016/j.jdermsci.2009.09.010>
11. Gondek DC, Lu LF, Quezada SA, Sakaguchi S, Noelle RJ. Cutting Edge: Contact- mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol 2005; 174(4): 1783–6. <https://doi.org/10.4049/jimmunol.174.4.1783>
12. Goodfield M, Kownacki S, Berth-Jones J. Double-blind, randomised, multicentre, paralel group study comparing 1% coal tar preparation with 5% coal tar preparation in psoriasis. J Dermatol Treat 2004; 15(1): 14–22. <https://doi.org/10.1080/09546630310017843>
13. Grossman WJ, Verbsky JW, Barchet W, Collona M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 2004; 21(4): 589–601. <https://doi.org/10.1016/j.immuni.2004.09.002>
14. Hirahara K, Liu L, Clark RA, Yamanaka K, Fuhlbrigge RC, Kupper TS. The Majority of Human Peripheral Blood CD4+CD25highFoxp3+ Regulatory T Cells Bear Functional Skin-Homing Receptors. J Immunol 2006; 177(7): 4488–94. <https://doi.org/10.4049/jimmunol.177.7.4488>
15. Hofmeister R, Khaled AR, Benbernou N, Rajnavolgyi E, Muegge K, Durum SK. Interleukin-7: physiological roles and mechanisms of action. Cytokine Growth Factor Rev 1999; 10(1): 41–60. <https://doi.org/10.1016/S1359-6101(98)00025-2>
16. Huber S, Schramm C, Lehr HA et al. Cutting Edge: TGF-β signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J Immunol 2004; 173(11): 6526–31. <https://doi.org/10.4049/jimmunol.173.11.6526>
17. Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J Exp Med 2001; 193(11): 1285–94. <https://doi.org/10.1084/jem.193.11.1285> <PubMed>
18. Kimball AB, Kupper TS. Future perspectives/quo vadis psoriasis treatment? Immunology, pharmacogenomics, and epidemiology. Clin Dermatol 2008; 26(5): 554–61. <https://doi.org/10.1016/j.clindermatol.2007.11.007>
19. Kortuem KR, Davis MD, Witman PM et al. Results of Goeckerman treatment for psoriasis in children: a 21-year retrospective review. Pediatr Dermatol 2010; 27: 518–24. <https://doi.org/10.1111/j.1525-1470.2010.01124.x>
20. Kursar M, Bonhagen K, Fensterle J et al. Regulatory CD4+CD25+ T Cells Restrict Memory CD8+ T Cell Responses. J Exp Med 2002; 196(12): 1585–92. <https://doi.org/10.1084/jem.20011347> <PubMed>
21. Lan RY, Mackay JR, Gershwin ME. Regulatory T cells in the prevention of mucosal inflammatory diseases: Patrolling the bordur. J Autoimmun 2007; 29(4): 272–80. <https://doi.org/10.1016/j.jaut.2007.07.021> <PubMed>
22. Lebwohl M, Ali S. Treatment of psoriasis. Part 1. Topical therapy and phototherapy. J Am Acad Dermatol 2001; 45(4): 487–98. <https://doi.org/10.1067/mjd.2001.117046>
23. Li Y-YY, Zollner TM, Schön MP. Targeting leukocyte recruitment in the treatment of psoriasis. Clin Dermatol 2008; 26(5): 527–38. <https://doi.org/10.1016/j.clindermatol.2007.11.002>
24. Liu W, Putnam AL, Xu-Yu Z et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 2006; 203(7): 1701–11. <https://doi.org/10.1084/jem.20060772> <PubMed>
25. Ochs HD, Oukka M, Torgerson TR. TH17 cells and regulatory T cells in primary immunodeficiency diseases. J Allergy Clin Immunol 2009; 123(5): 977–83. <https://doi.org/10.1016/j.jaci.2009.03.030> <PubMed>
26. Piccirillo CA, Shevach EM. Control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol 2001; 167(3): 1137–40. <https://doi.org/10.4049/jimmunol.167.3.1137>
27. Quaglino P, Bergallo M, Ponti R., et al. Th1, Th2, Th17 and regulatory T cell pattern in psoriatic patients: modulation of cytokines and gene targets induced by etanercept treatment and correlation with clinical response. Dermatology 2011; 223(1): 57–67. <https://doi.org/10.1159/000330330>
28. Roelofzen JH, Aben KK, van der Valk PG et al. Coal tar in dermatology. J Dermatolog Treat 2007; 18: 329–34. <https://doi.org/10.1080/09546630701496347>
29. Saito C, Maeda A, Morita A. Bath-PUVA therapy induces circulating regulatory T cells in patients with psoriasis. J Dermatol Sci 2009; 53(3): 231–3. <https://doi.org/10.1016/j.jdermsci.2008.09.011>
30. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6(4): 345–52. <https://doi.org/10.1038/ni1178>
31. Sugiyama H, Gyulai R, Toichi E et al. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol 2005; 174(1): 164–73. <https://doi.org/10.4049/jimmunol.174.1.164> <PubMed>
32. Taams LS, Van Amelsfort JM, Tiemessen MM et al. Modulation of monocyte/ macrophage function by human CD4+CD25+ regulatory T cells. Hum Immunol 2005; 66(3): 222–30. <https://doi.org/10.1016/j.humimm.2004.12.006> <PubMed>
33. Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998; 188(2): 287–96. <https://doi.org/10.1084/jem.188.2.287> <PubMed>
34. Trzonkowski P, Szmit E, Mysliwska J, Dobyszuk A, Myśliwski A. CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction. Clin Immunol 2004; 112(3): 258–67. <https://doi.org/10.1016/j.clim.2004.04.003>
35. Venken K, Hellings N, Broekmans T, Hensen K, Rummens JL, Stinissen P. Natural naive CD4+CD25+CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. J Immunol 2008; 180(9): 6411–20. <https://doi.org/10.4049/jimmunol.180.9.6411>
36. Verhagen J, Akdis M, Traidl-Hoffmann C et al. Absence of T-regulatory cell expression and function in atopic dermatitis skin. J Allergy Clin Immunol 2006; 117(1): 176–83. <https://doi.org/10.1016/j.jaci.2005.10.040>
37. Vojdani A, Erde J. Regulatory T cells, a potent immunoregulatory target for CA M researchers: modulating tumor immunity, autoimmunity and alloreactive immunity (III). Evid Based Complement Alternat Med 2006; 3(3): 309–16. <https://doi.org/10.1093/ecam/nel047> <PubMed>
38. Zhang L, Yang XQ, Cheng J, Hui RS, Gao TW. Increased Th17 cells are accompanied by FoxP3(+) Treg cell accumulation and correlated with psoriasis disease severity. Clin Immunol 2010; 135(1): 108–17. <https://doi.org/10.1016/j.clim.2009.11.008>
39. Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA. IL -2 Is Essential for TG F-β to Convert Naive CD4+CD25+ Cells to CD25+Foxp3+ Regulatory T Cells and for Expansion of These Cells. J Immunol 2007; 178(4): 2018–27. <https://doi.org/10.4049/jimmunol.178.4.2018>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive