Acta Med. 2012, 55: 66-73

https://doi.org/10.14712/18059694.2015.57

Radio-Sensitization of Human Leukaemic MOLT-4 Cells by DNA-Dependent Protein Kinase Inhibitor, NU7026

Aleš Tichýa,b, Eva Novotnáb, Kamila Ďurišováb, Barbora Šalovskáa,b, Radka Sedlaříkováb, Jaroslav Pejchalc, Lenka Zárybnickáb, Jiřina Vávrováb, Zuzana Šinkorováb, Martina Řezáčováa

aCharles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic: Institute of Medical Biochemistry
bUniversity of Defence in Brno, Faculty of Health Sciences in Hradec Králové, Czech Republic: Department of Radiobiology
cUniversity of Defence in Brno, Faculty of Health Sciences in Hradec Králové, Czech Republic: Centrum of Advanced Studies

Received October 26, 2011
Accepted May 9, 2012

References

1. Amrein L, Loignon M, Goulet AC , Dunn M, Jean-Claude B, Aloyz R, Panasci L. Chlorambucil cytotoxicity in malignant B lymphocytes is synergistically increased by 2-(morpholin-4-yl)-benzo(h)chomen-4-one (NU7026)-mediated inhibition of DNA double-strand break repair via inhibition of DNA -dependent protein kinase. J Pharmacol Exp Ther 2007; 321: 848–855. <https://doi.org/10.1124/jpet.106.118356>
2. Anderson CW , Carter TH. The DNA -activated protein kinase – DNA -PK. Curr Top Microbiol Immunol 1996; 217: 91–111.
3. Bakkenist C, Kastan MB. DNA damage activates AT M through intermolecular autophosphorylation and dimmer dissociation. Nature 2003; 421: 499–506. <https://doi.org/10.1038/nature01368>
4. Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan MB, Bartek J, Lukas J. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol 2006; 173: 195–206. <https://doi.org/10.1083/jcb.200510130> <PubMed>
5. Bernstein C, Bernstein H, Payne CM, Garewal H. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 2002; 511: 145–178. <https://doi.org/10.1016/S1383-5742(02)00009-1>
6. Boehme KA, Kulikov R, Blattner C. p53 stabilization in response to DNA damage requires Akt/PKB and DNA -PK. Proc Natl Acad Sci USA 2008; 105: 7785–7790. <https://doi.org/10.1073/pnas.0703423105> <PubMed>
7. Brooks CL , Gu W. p53 ubiquitination: Mdm2 and beyond. Mol. Cell 2006; 21: 307–315. <https://doi.org/10.1016/j.molcel.2006.01.020> <PubMed>
8. Caspari T. How to activate p53. Curr Biol 2000; 10: R315–R317. <https://doi.org/10.1016/S0960-9822(00)00439-5>
9. Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA , Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C , Pilch DR, Olaru A, Eckhaus M, Camerini- Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A. Genomic instability in mice lacking histone H2AX. Science 2002; 296: 922–927. <https://doi.org/10.1126/science.1069398> <PubMed>
10. Chu G. Double strand break repair. J Biol Chem 1997; 272: 24097–24100. <https://doi.org/10.1074/jbc.272.39.24097>
11. Colman MS, Afshari CA , Barrett JC. Regulation of p53 stability and activity in response to genotoxic stress. Mutat Res 2000; 462: 179–188. <https://doi.org/10.1016/S1383-5742(00)00035-1>
12. Criswell T, Leskov K, Miyamoto S, Luo G, Boothman DA. Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene 2003; 22: 5813–5827. <https://doi.org/10.1038/sj.onc.1206680>
13. Griffin RJ, Fontana G, Golding BT, Guiard S, Hardcastle IR, Leahy JJ, Martin N, Richardson C, Rigoreau L, Stockley M, Smith GC . Selective benzopyranone and pyrimido(2,1-a)isoquiolin-4-one inhibitors of DNA -dependent protein kinase: synthesis, structure–activity studies, and radiosensitisation of a human tumor cell line in vitro. J Med Chem 2005; 48: 569–585. <https://doi.org/10.1021/jm049526a>
14. Havelek R, Řezáčová M, Šinkorová Z, Zárybnická L, Tichý A, Vávrová J. Phosphorylation of histone H2AX as an indicator of received dose of gamma radiation after whole-body irradiation of rats. Acta Veterinaria Brno 2011; 80: 113–118. <https://doi.org/10.2754/avb201180010113>
15. Helt CE , Cliby WA , Keng PC , Bambara RA, O’Reilly MA. Ataxia telangiectasia mutated (AT M) and AT M and Rad3-related protein exhibit selective target specificities in response to different forms of DNA damage. J Biol Chem 2005; 280: 1186–1192. <https://doi.org/10.1074/jbc.M410873200>
16. Jamil S, Mojtabavi S, Hojabrpour P, Cheah S, Duronio V. An essential role for MCL -1 in AT R-mediated CHK1 phosphorylation. Mol Biol Cell 2005; 19: 3212–3220. <https://doi.org/10.1091/mbc.E07-11-1171> <PubMed>
17. Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H, Goodman R, Lozano G, Zhao Y, Lu H. DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SS RP1. Mol Cell 2001; 7: 283–292. <https://doi.org/10.1016/S1097-2765(01)00176-9>
18. Keller DM, Lu H. p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT 16.SS RP1 complex. J Biol Chem 2002; 277: 50206–50213. <https://doi.org/10.1074/jbc.M209820200>
19. Khanna KK, Lavin MF, Jackson SP, Mulhern TD. ATM, a central controller of cellular responses to DNA damage. Cell Death Differ 2001; 8: 1052–1065. <https://doi.org/10.1038/sj.cdd.4400874>
20. Lavin MF, Khanna KK, Beamish H, Spring K, Watters D, Shiloh Y. Relationship of the ataxia-telangiectasia protein AT M to phosphoinositide 3-kinase. Trends Biochem Sci 1995; 20: 382–383. <https://doi.org/10.1016/S0968-0004(00)89083-0>
21. Lavin MF, Gueven N. The complexity of p53 stabilization and activation. Cell Death Differ 2006; 13: 941–950. <https://doi.org/10.1038/sj.cdd.4401925>
22. Leber R, Wise TW , Mizuta R, Meek K. The XRCC 4 gene product is a target for and interacts with the DNA -dependent protein kinase. J Biol Chem 1998; 273: 1794–1801. <https://doi.org/10.1074/jbc.273.3.1794>
23. Lukas C, Bartkova J, Latella L, Falck J, Mailand N, Schroeder T, Sehested M, Lukas J, Bartek J. DNA damage-activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology. Cancer Res 2001; 61: 4990–4993.
24. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 2000; 97: 10389–10394. <https://doi.org/10.1073/pnas.190030497> <PubMed>
25. Maya R, Balass M, Kim ST , Shkedy D, Leal JF, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y, Kastan MB, Katzir E, Oren M. AT M-dependent phosphorylation of Mdm2 on serine 395: Role in p53 activation by DNA damage. Genes Devel 2001; 15: 1067–1077. <https://doi.org/10.1101/gad.886901> <PubMed>
26. Nutley BP, Smith NF, Hayes A, Kelland LR, Brunton L, Golding BT, Smith GC , Martin NM, Workman P, Raynaud FI. Preclinical pharmacokinetics and metabolism of a novel prototype DNA -PK inhibitor NU7026. Br J Cancer 2005; 93: 1011–1018. <https://doi.org/10.1038/sj.bjc.6602823> <PubMed>
27. Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53‑regulated genes. Nat. Rev. Mol Cell Biol 2008; 9: 402–412. <https://doi.org/10.1038/nrm2395>
28. Rogakou EP , Pilch DR, Orr AH, Ivanova VS , Bonner WM. DNA double-stranded breaks induce histone H2A.X phosphorylation on serine 139. J Biol Chem 1998; 273: 5858–5869. <https://doi.org/10.1074/jbc.273.10.5858>
29. Rogakou EP , Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 1999; 146: 905–916. <https://doi.org/10.1083/jcb.146.5.905> <PubMed>
30. Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 1997; 91: 325–334. <https://doi.org/10.1016/S0092-8674(00)80416-X>
31. Shiloh Y. The AT M-mediated DNA -damage response: taking shape. Trends Biochem Sci 2006; 31: 402–410. <https://doi.org/10.1016/j.tibs.2006.05.004>
32. Skvara H, Thallinger C, Wacheck V, Monia BP, Pehamberger H, Jansen B, Selzer E. Mcl-1 blocks radiation-induced apoptosis and inhibits clonogenic cell death. Anticancer Res 2005; 25: 2697–2703.
33. Smith GC , Jackson SP . The DNA -dependent protein kinase. Genes Devel 1999; 13: 916–934. <https://doi.org/10.1101/gad.13.8.916>
34. Stiff T, O’Driscoll M, Rief N, Iwabuchi K, Löbrich M, Jeggo PA . AT M and DNA -PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 2004; 64: 2390–2396. <https://doi.org/10.1158/0008-5472.CAN-03-3207>
35. Tichý A. Apoptotic machinery: the Bcl-2 family proteins in the role of inspectors and superintendents. Acta Medica (Hradec Kralove) 2006; 49: 13–18. <https://doi.org/10.14712/18059694.2017.103>
36. Tichý A, Záškodová D, Řezáčová M, Vávrová J, Vokurková D, Pejchal J, Vilasová Z, Cerman J, Österreicher J. Gamma-radiation-induced AT M-dependent signalling in human T-lymphocyte leukemic cells, MOLT-4 2007; Acta Biochim Pol. 54: 281–287. <https://doi.org/10.18388/abp.2007_3248>
37. Tichý A, Záškodová D, Pejchal J, Řezáčová M, Österreicher J, Vávrová J, Cerman J. Gamma irradiation of human leukaemic cells HL-60 and MOLT-4 induces decrease in Mcl-1 and Bid, release of cytochrome c, and activation of caspase-8 and caspase-9. Int J Radiat. Biol 2008; 84: 523–530. <https://doi.org/10.1080/09553000802078404>
38. Verheij M, Bartelink H. Radiation-induced apoptosis. Cell Tissue Res 2000; 301: 133–142. <https://doi.org/10.1007/s004410000188>
39. Veuger SJ, Curtin NJ, Richardson CJ, Smith GC , Durkacz BW. Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNA-dependent protein kinase and poly(ADP-ribose) polymerase-1. Cancer Res 2003; 63: 6008–6015.
40. Veuger SJ, Curtin NJ, Smith GC , Durkacz BW. Effects of novel inhibitors of poly(ADP-ribose) polymerase-1 and the DNA -dependent protein kinase on enzyme activities and DNA repair. Oncogene 2004; 23: 7322–7329. <https://doi.org/10.1038/sj.onc.1207984>
41. Willmore E, de Caux S, Sunter NJ, Tilby MJ, Jackson GH, Austin CA , Durkacz BW. A novel DNA -dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood. 2004; 103: 4659–4665. <https://doi.org/10.1182/blood-2003-07-2527>
42. Zhu H, Gooderham NJ. Mechanisms of induction of cell cycle arrest and cell death by cryptolepine in human lung adenocarcinoma a549 cells. Toxicol Sci 2006; 91: 132–139. <https://doi.org/10.1093/toxsci/kfj146>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive