Acta Med. 2012, 55: 59-65

https://doi.org/10.14712/18059694.2015.56

CD200/CD200R Paired Potent Inhibitory Molecules Regulating Immune and Inflammatory Responses; Part II : CD 200/CD200R Potential Clinical Applications

Drahomíra Holmannováa, Martina Koláčkováa, Kateřina Kondělkováa, Pavel Kunešb, Jan Krejseka, Ctirad Andrýsa

aCharles University in Prague, Faculty of Medicine and University Hospital in Hradec Králové, Czech Republic: Department of Cardiac Surgery
bCharles University in Prague, Faculty of Medicine and University Hospital in Hradec Králové, Czech Republic: Department of Clinical Immunology and Allergology

Received August 16, 2011
Accepted March 5, 2012

References

1. Cameron CM, Barrett JW, Liu L, Lucas AR, McFadden G. Myxoma virus M141R expresses a viral CD200 (vOX-2) that is responsible for down-regulation of macrophage and T-cell activation in vivo. J Virol 2005; 79(10): 6052–67. <https://doi.org/10.1128/JVI.79.10.6052-6067.2005> <PubMed>
2. Chao CC , Gekker G, Hu S, Peterson PK. Human microglial cell defense against Toxoplasma gondii. The role of cytokines. J Immunol. 1994 Feb; 152(3): 1246–52.
3. Cherwinski HM, Murphy CA , Joyce BL, et al. The CD200 receptor is a novel and potent regulator of murine and human mast cell function. J Immunol 2005; 174(3): 1348–56. <https://doi.org/10.4049/jimmunol.174.3.1348>
4. Chung YH, Means RE, Choi JK, Lee BS, Jung JU. Kaposi’s sarcoma-associated herpesvirus OX2 glycoprotein activates myeloid-lineage cells to induce inflammatory cytokine production. J Virol 2002; 76(10): 4688–98. <https://doi.org/10.1128/JVI.76.10.4688-4698.2002> <PubMed>
5. Coles SJ, Wang EC , Man S, et al. CD200 expression suppresses natural killer cell function and directly inhibits patient anti-tumor response in acute myeloid leukemia. Leukemia 2011; 25(5): 792–9. <https://doi.org/10.1038/leu.2011.1> <PubMed>
6. Dorfman DM, Shahsafaei A. CD200 (OX-2) membrane glycoprotein expression in B cell-derived neoplasms. Am J Clin Pathol 2010; 134(5): 726–33. <https://doi.org/10.1309/AJCP38XRRUGSQOVC>
7. Garza LA , Yang CC , Zhao T, et al. Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells. J Clin Invest 2011; 121(2): 613–22. <https://doi.org/10.1172/JCI44478> <PubMed>
8. Gorczynski RM, Chen Z, Diao J, et al. Breast cancer cell CD200 expression regulates immune response to EMT6 tumor cells in mice. Breast Cancer Res Treat 2010; 123(2): 405–15. <https://doi.org/10.1007/s10549-009-0667-8>
9. Gorczynski RM, Chen Z, He W, Khatri I, Sun Y, Yu K, Boudakov I. Expression of a C D200 transgene is necessary for induction but not maintenance of tolerance to cardiac and skin allografts. J Immunol 2009; 183(3): 1560–8. <https://doi.org/10.4049/jimmunol.0900200>
10. Gorczynski R, Chen Z, Shivagnahnam S, Taseva A, Wong K, Yu K, Khatri I. CD200Fc(Gly)6TGFβ suppresses transplant rejection and MLCs in vitro. J Immunol 2010; 184, 49.15.
11. Gorczynski R, Chen Z, Shivagnahnam S, Taseva A, Wong K, Yu K, Khatri I. Potent immunosuppression by a bivalent molecule binding to CD200R and TG Fbeta. Transplantation 2010; 90(2): 150–9. <https://doi.org/10.1097/TP.0b013e3181e2d6a1>
12. Gorczynski RM, Chen Z, Yu K, Hu J. CD200 immunoadhesin suppresses collagen- induced arthritis in mice. Clin Immunol 2001; 101(3): 328–34. <https://doi.org/10.1006/clim.2001.5117>
13. Gorczynski RM, Clark DA, Erin N, Khatri I. Breast cancer cells CD200 expression regulates immune response to EMT6 tumor cells in mice. Breast Cancer Res Treat 2010; 123(2): 405–15. <https://doi.org/10.1007/s10549-009-0667-8>
14. Gorczynski RM, Hadidi S, Yu G, Clark DA. The same immunoregulatory molecules contribute to successful pregnancy and transplantation. Am J Reprod Immunol 2002; 48(1): 18–26. <https://doi.org/10.1034/j.1600-0897.2002.01094.x>
15. Jiang-Shieh YF, Chien HF, Chang CY, et al. Distribution and expression of CD200 in the rat respiratory system under normal and endotoxin-induced pathological conditions. J Anat 2010; 216(3): 407–16. <https://doi.org/10.1111/j.1469-7580.2009.01190.x> <PubMed>
16. Kawasaki BT, Mistree T, Hurt EM, Kalathur M, Farrar WL . Co-expression of the tolerogenic glycoprotein CD200, with markers for cancer stem cells. Biochem Biophys Res Commun 2007; 364(4): 778–782. <https://doi.org/10.1016/j.bbrc.2007.10.067> <PubMed>
17. Ko YC, Chien HF, Jiang-Shieh YF, et al. Endothelial CD200 is heterogeneously distributed, regulated and involved in immune cell-endothelium interactions. J A nat 2009; 214(1): 183–95.
18. Krejsek J, Kolackova M, Mandak J, et al. Expression of CD200/CD200R regulatory molecules on granulocytes and monocytes is modulated by cardiac surgical operation. Perfusion 2010; 25(6): 389–97. <https://doi.org/10.1177/0267659110381451>
19. Kretz-Rommel A, Qin F, Dakappagari N, Cofiell R, Faas SJ, Bowdish KS. Blockade of CD200 in the presence or absence of antibody effector function: implications for anti-CD200 therapy. J Immunol 2008; 180(2): 699–705. <https://doi.org/10.4049/jimmunol.180.2.699>
20. Langlais CL , Jones JM, Estep RD, Wong SW . Rhesus rhadinovirus R15 encodes a functional homologue of human CD200. J Virol 2006; 80(6): 3098–103. <https://doi.org/10.1128/JVI.80.6.3098-3103.2006> <PubMed>
21. Lee L, Liu J, Manuel J, Gorczynski RM. A role for the immunomodulatory molecules CD200 and CD200R in regulating bone formation. Immunol Lett 2006; 105(2): 150–8. <https://doi.org/10.1016/j.imlet.2006.02.002>
22. Liu Y, Bando Y, Vargas-Lowy D, et al. CD200R1 agonist attenuates mechanisms of chronic disease in a murine model of multiple sclerosis. J Neurosci 2010; 30(6): 2025–38. <https://doi.org/10.1523/JNEUROSCI.4272-09.2010> <PubMed>
23. Lue LF, Kuo YM, Beach T, Walker DG. Microglia activation and anti-inflammatory regulation in Alzheimer’s disease. Mol Neurobiol 2010; 41(2–3): 115–28. <https://doi.org/10.1007/s12035-010-8106-8> <PubMed>
24. Luo XG, Zhang JJ, Zhang CD, Liu R, Zheng L, et al. Altered regulation of CD200 receptor in monocyte-derived macrophages from individuals with Parkinson’s disease. Neurochem Res 2010; 35(4): 540–7. <https://doi.org/10.1007/s11064-009-0094-6>
25. Lynch MA.The multifaceted profile of activated microglia. Mol Neurobiol 2009; 40(2): 139–56. <https://doi.org/10.1007/s12035-009-8077-9>
26. Matsue H. CD 200-mediated regulation of skin immunity. J Invest Dermatol 2005; 125(6): 2691–8. <https://doi.org/10.1111/j.0022-202X.2005.23978.x>
27. Matsumoto H, Kumon Y, Watanabe H, et al. Expression of CD200 by macrophage- like cells in ischemic core of rat brain after transient middle cerebral artery occlusion. Neurosci Lett 2007; 418(1): 44–8. <https://doi.org/10.1016/j.neulet.2007.03.027>
28. Miyajima I, Dombrowicz D, Martin TR, Ravetch JV, Kinet JP, Galli SJ. Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc gammaRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis. J Clin Invest 1997; 99(5): 901–14. <https://doi.org/10.1172/JCI119255> <PubMed>
29. Moreaux J, Veyrune JL, Reme T, De Vos J, Klein B. CD200: a putative therapeutic target in cancer. Biochem Biophys Res Commun 2008; 366(1): 117–22. <https://doi.org/10.1016/j.bbrc.2007.11.103>
30. Oursler MJ. Recent advances in understanding the mechanisms of osteoclast precursor fusion. J Cell Biochem 2010; 110(5): 1058–62. <https://doi.org/10.1002/jcb.22640> <PubMed>
31. Pallasch CP , Ulbrich S, Brinker R, Hallek M, Uger RA, Wendtner CM. Disruption of T cell suppression in chronic lymphocytic leukemia by CD200 blockade. Leuk Res 2009; 33(3): 460–4. <https://doi.org/10.1016/j.leukres.2008.08.021>
32. Prinz M, Mildner A. Microglia in the CNS : immigrants from another world. Glia. 2011; 59(2): 177–87. <https://doi.org/10.1002/glia.21104>
33. Rosenblum MD, Yancey KB, Olasz EB, Truitt RL. CD200, a “no danger” signal for hair follicles. J Dermatol Sci 2006; 41(3): 165–74. <https://doi.org/10.1016/j.jdermsci.2005.11.003>
34. Rubino AS , Serraino GF, Mariscalco G, Marsico R, Sala A, Renzulli A. Leukocyte depletion during extracorporeal circulation allows better organ protection but does not change hospital outcomes. Ann Thorac Surg 2011; 91: 534–540. <https://doi.org/10.1016/j.athoracsur.2010.09.077>
35. Rygiel TP , Rijkers ES , de Ruiter T, et al. Lack of CD200 enhances pathological T cell responses during influenza infection. J Immunol 2009; 183(3): 1990–6. <https://doi.org/10.4049/jimmunol.0900252>
36. Salata C, Curtarello M, Calistri A, et al. vOX2 glycoprotein of human herpesvirus 8 modulates human primary macrophages activity. J Cell Physiol 2009; 219(3): 698–706. <https://doi.org/10.1002/jcp.21722>
37. Sarangi PP , Woo SR, Rouse BT. Control of viral immunoinflammatory lesions by manipulating CD200:CD200 receptor interaction. Clin Immunol 2009; 131(1): 31–40. <https://doi.org/10.1016/j.clim.2008.10.008>
38. Shiratori I, Yamaguchi M, Suzukawa M, et al. Down-regulation of basophil function by human CD200 and human herpesvirus-8 CD200. J Immunol 2005; 175(7): 4441–9. <https://doi.org/10.4049/jimmunol.175.7.4441>
39. Simelyte E, Alzabin S, Boudakov I, Williams R. CD200R1 regulates the severity of arthritis but has minimal impact on the adaptive immune response. Clin Exp Immunol 2010; 162(1): 163–8. <https://doi.org/10.1111/j.1365-2249.2010.04227.x> <PubMed>
40. Simelyte E, Criado G, Essex D, Uger RA, Feldmann M, Williams RO. CD200- Fc, a novel antiarthritic biologic agent that targets proinflammatory cytokine expression in the joints of mice with collagen-induced arthritis. Arthritis Rheum 2008; 58(4): 1038–43. <https://doi.org/10.1002/art.23378>
41. Stumpfova M, Ratner D, Desciak EB, Eliezri YD, Owens DM. The immunosuppressive surface ligand CD200 augments the metastatic capacity of squamous cell carcinoma. Cancer Res 2010; 70(7): 2962–72. <https://doi.org/10.1158/0008-5472.CAN-09-4380> <PubMed>
42. Taylor N, McConachie K, Calder C, Dawson R, Dick A, Sedgwick JD. Enhanced tolerance to autoimmune uveitis in CD200-deficient mice correlates with a pronounced Th2 switch in response to antigen challenge. J Immunol 2005; 174(1): 143–54. <https://doi.org/10.4049/jimmunol.174.1.143> <PubMed>
43. Taylor S, Calder CJ, Albon J, Erichsen JT, Boulton ME, Morgan JE. Involvement of the CD200 receptor complex in microglia activation in experimental glaucoma. Exp Eye Res 2011; 92(5): 338–43. <https://doi.org/10.1016/j.exer.2011.01.012> <PubMed>
44. Torrero MN, Larson D, Hübner MP, Mitre E. CD200R surface expression as a marker of murine basophil activation. Clin Exp Allergy. 2009; 39(3): 361–9. <https://doi.org/10.1111/j.1365-2222.2008.03154.x> <PubMed>
45. Walker DG, Dalsing-Hernandez JE, Campbell NA , Lue LF. Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp Neurol 2009; 215(1): 5–19. <https://doi.org/10.1016/j.expneurol.2008.09.003> <PubMed>
46. Wang XJ, Ye M, Zhang YH, Chen SD. CD200/CD200R regulation of microglia activation in the pathogenesis of Parkinson’s disease. J Neuroimmune Pharmacol 2007; 2(3): 259–64. <https://doi.org/10.1007/s11481-007-9075-1>
47. Weiguo Cui, Esteban Cuartas, Juan Ke, et al. CD200 and its receptor, CD200R, modulate bone mass via the differentiation of osteoclasts. Proc Natl Acad Sci USA 2007; 104(36): 14436–41.
48. Wong KK, Khatri I, Shaha S, Spaner DE, Gorczynski RM. The role of CD200 in immunity to B cell lymphoma. J Leukoc Biol 2010; 88(2): 361–72. <https://doi.org/10.1189/jlb.1009686>
49. Yu K, Chen Z, Wang S, Gorczynski R. Decreased alloreactivity using donor cells from mice expressing a C D200 transgene under control of a tetracycline-inducible promoter. Transplantation 2005; 80(3): 394–401. <https://doi.org/10.1097/01.tp.0000168152.72560.82>
50. Yu G, Sun Y, Foerster K, Manuel J, et al. LPS -induced murine abortions require C5 but not C3, and are prevented by upregulating expression of the CD200 tolerance signaling molecule. Am J Reprod Immunol 2008; 60(2): 135–40. <https://doi.org/10.1111/j.1600-0897.2008.00605.x>
51. Zhang S, Cherwinski H, Sedgwick JD, Phillips JH. Molecular mechanisms of CD200 inhibition of mast cell activation. J Immunol 2004; 173(11): 6786–93. <https://doi.org/10.4049/jimmunol.173.11.6786>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive