Acta Med. 2012, 55: 12-17

https://doi.org/10.14712/18059694.2015.68

CD200/CD200R Paired Potent Inhibitory Molecules Regulating Immune and Inflammatory Responses; part I: CD200/CD200R Structure, Activation, and Function

Drahomíra Holmannováa, Martina Koláčkováa, Kateřina Kondělkováa, Pavel Kunešb, Jan Krejseka, Ctirad Andrýsa

aCharles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Czech Republic: Department of Clinical Immunology and Allergology
bCharles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Czech Republic: Department of Cardiac Surgery

Received August 16, 2011
Accepted March 20, 2012

References

1. Akkaya M, Barclay AN. Heterogeneity in the CD200R paired receptor family. Immunogenetics 2010; 62(1): 15–22. <https://doi.org/10.1007/s00251-009-0415-6>
2. Barclay AN. Different reticular elements in rat lymphoid tissue identified by localization of Ia, Thy‑1 and MRC OX 2 antigens. Immunology. 1981 Dec; 44(4): 727–36.
3. Barclay AN, Ward HA. Purification and chemical characterisation of membrane glycoproteins from rat thymocytes and brain, recognised by monoclonal antibody MRC OX 2. Eur J Biochem. 1982; 129(2): 447–58. <https://doi.org/10.1111/j.1432-1033.1982.tb07070.x>
4. Barclay AN, Wright GJ, Brooke G, Brown MH. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 2002; 23(6): 285–90. <https://doi.org/10.1016/S1471-4906(02)02223-8>
5. Chen Z, Chen DX, Kai Y, Khatri I, Lamptey B, Gorczynski RM. Identification of an expressed truncated form of CD200, CD200tr, which is a physiologic antagonist of CD200‑induced suppression. Transplantation 2008; 86(8): 1116–24. <https://doi.org/10.1097/TP.0b013e318186fec2>
6. Chen Z, Ma X, Zhang J, Hu J, Gorczynski RM. Alternative splicing of CD200 is regulated by an exonic splicing enhancer and SF2/ASF. Nucleic Acids Res 2010; 38(19): 6684–96. <https://doi.org/10.1093/nar/gkq554> <PubMed>
7. Chen Z, Marseden PA , Gorczynski RM. Role of a distal enhancer in the transcriptional responsiveness of the human CD200 gene to interferon‑gama and tumor necrosis factor‑alpha. Mol Immunol 2009; 46(10): 1951–63. <https://doi.org/10.1016/j.molimm.2009.03.015>
8. Chen Z, Marsden PA , Gorczynski RM. Cloning and characterization of the human CD200 promoter region. Mol Immunol 2006 Feb; 43(6): 579–87. <https://doi.org/10.1016/j.molimm.2005.04.014>
9. Dick AD, Broderick C, Forrester JV, Wright GJ. Distribution of OX2 antigen and OX2 receptor within retina. Invest Ophthalmol Vis Sci 2001; 42(1): 170–6.
10. Fallarino F, Asselin‑Paturel C, Vacca C, et al. Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. J Immunol 2004; 173(6): 3748–54. <https://doi.org/10.4049/jimmunol.173.6.3748>
11. Fallarino F, Orabona C, Vacca C, et al. Ligand and cytokine dependence of the immunosuppressive pathway of tryptophan catabolism in plasmacytoid dendritic cells. Int Immunol 2005; 17(11): 1429–38. <https://doi.org/10.1093/intimm/dxh321>
12. Fan H, Wang J, Zhou X, Liu Z, Zheng SG. Induction of antigen‑specific immune tolerance by TGF‑beta‑induced CD4+Foxp3+ regulatory T cells. Int J Clin Exp Med 2009; 2(3): 212–20.
13. Foster‑Cuevas M, Wright GJ, Puklavec MJ, Brown MH, Barclay AN. Human herpesvirus 8 K14 protein mimics CD200 in down‑regulating macrophage activation through CD200 receptor. J Virol. 2004 Jul; 78(14): 7667–76. <https://doi.org/10.1128/JVI.78.14.7667-7676.2004> <PubMed>
14. Gorczynski R, Boudakov I, Khatri. Peptides of CD200 modulate LPS‑induced TNF‑alpha induction and mortality in vivo. J Surg Res 2008; 145(1): 87–96. <https://doi.org/10.1016/j.jss.2007.04.043>
15. Gorczynski R, Boudakov I, Khatri I. A comparison of the biological properties of small molecular weight agonists and antagonists of CD200:CD200R interactions. Med Chem 2008; 4(6): 624–31. <https://doi.org/10.2174/157340608786241981>
16. Gorczynski RM, Cattral MS, Chen Z, et al. An immunoadhesin incorporating the molecule OX‑2 is a potent immunosuppressant that prolongs allo‑ and xenograft survival. J Immunol 1999; 163: 1654–60.
17. Gorczynski RM,Chen Z, Fu XM, Zeng H. Increased expression of the novel molecule OX‑2 is involved in prolongation of murine renal allograft survival. Transplantation 1998; 65: 1106–14. <https://doi.org/10.1097/00007890-199804270-00016>
18. Gorczynski R, Chen Z, Kai Y, Lee L, Wong S, Marsden PA . CD200 is a ligand for all members of the CD200R family of immunoregulatory molecules. J Immunol 2004; 172(12): 7744–9. <https://doi.org/10.4049/jimmunol.172.12.7744>
19. Graeber MB, Lopez‑Redondo F, Ikoma E, et al. The microglia/macrophage response in the neonatal rat facial nucleus following axiomy. Brain Res 1998; 813(2): 241–53. <https://doi.org/10.1016/S0006-8993(98)00859-2>
20. Hatherley D, Cherwinski HM, Moshref M, Barclay AN. Recombinant CD200 protein does not bind activating proteins closely related to CD200 receptor. J Immunol 2005; 175(4): 2469–74. <https://doi.org/10.4049/jimmunol.175.4.2469>
21. Hoek RM, Ruuls SR, Murphy CA, et al. Down‑regulation of the macrophage lineage through interaction with OX2 (CD200). Science 2000; 290(5497): 1768–71. <https://doi.org/10.1126/science.290.5497.1768>
22. Jenmalm MC, Cherwinski H, Bowman EP, Phillips JH, Sedgwick JD. Regulation of myeloid cell function through the CD200 receptor1. J Immunol 2006; 176(1): 191–199. <https://doi.org/10.4049/jimmunol.176.1.191>
23. Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor SF2/ASF is a proto‑oncogene. Nat Struct Mol Biol 2007; 14(3): 185–93. <https://doi.org/10.1038/nsmb1209> <PubMed>
24. Karra L, Berent‑Maoz B, Ben‑Zimra M, Levi‑Schaffer F. Are we ready to downregulate mast cells? Curr Opin Immunol 2009; 21(6): 708–14. <https://doi.org/10.1016/j.coi.2009.09.010>
25. Koning N, van Eijk M, Pouwels W, et al. Expression of the inhibitory CD200 receptor is associated with alternative macrophage activation. J Innate Immun 2010; 2(2): 195–200. <https://doi.org/10.1159/000252803>
26. McCaughan GW, Clark MJ, Hurst J, Grosveld F, Barclay AN. The gene for MRC OX‑2 membrane glycoprotein is localized on human chromosome 3. Immunogenetics. 1987; 25(2): 133–5. <https://doi.org/10.1007/BF00364281>
27. Mihrshahi R, Barclay AN, Brown MH. Essential roles for Dok2 and RasGAP in CD200 receptor‑mediated regulation of human myeloid cells. J Immunol 2009; 183(8): 4879–86. <https://doi.org/10.4049/jimmunol.0901531> <PubMed>
28. Mihrshahi R, Brown MH. Downstream of tyrosine kinase 1 and 2 play opposing roles in CD200 receptor signaling. J Immunol 2010; 185(12): 7216–22. <https://doi.org/10.4049/jimmunol.1002858> <PubMed>
29. Mukhopadhyay S, Plüddemann A, Hoe JC, et al. Immune inhibitory ligand CD200 induction by TLRs and NLRs limits macrophage activation to protect the host from meningococcal septicemia. Cell Host Microbe 2010; 8(3): 236–47. <https://doi.org/10.1016/j.chom.2010.08.005>
30. Penberthy WT, Tsunoda I. The importance of NAD in multiple sclerosis. Curr Pharm Des 2009; 15(1): 64–99. <https://doi.org/10.2174/138161209787185751> <PubMed>
31. Peng Q, Malhotra S, Torchia JA, Kerr WG, Coggeshall KM, Humphrey MB. EM2‑ and DAP12‑dependent activation of PI3K requires DAP10 and is inhibited by SHIP. Sci Signal 2010; 3(122): ra38. <https://doi.org/10.1126/scisignal.2000500> <PubMed>
32. Rijkers ES, de Ruiter T, Baridi A, Veninga H, Hoek RM, Meyaard L. The inhibitory CD200R is differentially expressed on human and mouse T and B lymphocytes. Mol Immunol 2008; 45(4): 1126–35. <https://doi.org/10.1016/j.molimm.2007.07.013>
33. Rijkers ES, de Ruiter T, Baridi A, Veninga H, Hoek RM, Meyaard L. The inhibitory CD200R is differentially expressed on human and mouse T and B lymphocytes. Mol Immunol 2008; 45(4): 1126–35. <https://doi.org/10.1016/j.molimm.2007.07.013>
34. Rijkers ES, de Ruiter T, Verbrugge A, Hoek RM, Meyaard L. CD‑200R‑ mediated inhibition of FcεR induced degranulation requires at least two functional tyrosine; Biology of Inhibitory Immune Receptors – Studies on CD200R and LAIR‑1, chapter 3, Doctoral study Utrecht University 2007.
35. Rosenblum MD, Olasz E, Woodliff JE, et al. CD200 is a novel p53‑target gene involved in apoptosis‑associated immune tolerance. Blood 2004; 103(7): 2691–8. <https://doi.org/10.1182/blood-2003-09-3184>
36. Rosenblum MD, Olasz EB, Yancey KB, et al. Expression of CD200 on epithelial cells of the murine hair follicle: a role in tissue‑specific immune tolerance? J Invest Dermatol 2004; 123(5): 880–7. <https://doi.org/10.1111/j.0022-202X.2004.23461.x>
37. Salata C, Curtarello M, Calistri A, Sartori E, et al. vOX2 glycoprotein of human herpesvirus 8 modulates human primary macrophages activity. J Cell Physiol 2009; 219(3): 698–706. <https://doi.org/10.1002/jcp.21722>
38. Soliman H, Mediavilla‑Varela M, Antonia S.Indoleamine 2,3‑dioxygenase: is it an immune suppressor? Cancer J 2010; 16(4): 354–9. <https://doi.org/10.1097/PPO.0b013e3181eb3343> <PubMed>
39. Vieites JM, de la Torre R, Ortega MA, et al. Characterization of human CD200 glycoprotein receptor gene located on chromosome 3q12‑13. Gene 2003; 311: 99–104. <https://doi.org/10.1016/S0378-1119(03)00562-6>
40. Voehringer D, Rosen DB, Lanier LL, Locksley RM. CD200 receptor family members represent novel DAP12‑associated activating receptors on basophils and mast cells. J Biol Chem 2004; 279(52): 54117–23. <https://doi.org/10.1074/jbc.M406997200>
41. Taylor N, McConachie K, Calder C, et al. Enhanced tolerance to autoimmune uveitis in CD200‑deficient mice correlates with a pronounced Th2 switch in response to antigen challenge. J Immunol. 2005 Jan 1; 174(1): 143–54. <https://doi.org/10.4049/jimmunol.174.1.143> <PubMed>
42. Trabanelli S, Ocadlikova D, Evangelisti C, Parisi S, Curti A. Induction of regulatory T cells by dendritic cells through indoleamine 2,3‑dioxygenase: A potent mechanism of acquired peripheral tolerance. Curr Med Chem 2011; 18(15): 2234–9. <https://doi.org/10.2174/092986711795656054>
43. Webb M, Barclay AN. Localisation of the MRC OX‑2 glycoprotein on the surfaces of neurones. J Neurochem 1984; 43(4): 1061–7. <https://doi.org/10.1111/j.1471-4159.1984.tb12844.x>
44. Wright GJ, Cherwinski H, Foster‑Cuevas M, et al. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol 2003; 171(6): 3034–46. <https://doi.org/10.4049/jimmunol.171.6.3034>
45. Wright GJ, Puklavec MJ, Willis AC, et al. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 2000; 13(2): 233–42. <https://doi.org/10.1016/S1074-7613(00)00023-6>
46. Zhang S, Phillips H. Identification of tyrosine residues crucial for CD200R‑mediated inhibition of mast cell activation. J Leukoc Biol 2006; 79(2): 363–8. <https://doi.org/10.1189/jlb.0705398>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive