Acta Med. 2012, 55: 12-17
https://doi.org/10.14712/18059694.2015.68
CD200/CD200R Paired Potent Inhibitory Molecules Regulating Immune and Inflammatory Responses; part I: CD200/CD200R Structure, Activation, and Function
References
1. Immunogenetics 2010; 62(1): 15–22.
< M, Barclay AN. Heterogeneity in the CD200R paired receptor family. https://doi.org/10.1007/s00251-009-0415-6>
2. Immunology. 1981 Dec; 44(4): 727–36.
AN. Different reticular elements in rat lymphoid tissue identified by localization of Ia, Thy‑1 and MRC OX 2 antigens.
3. Eur J Biochem. 1982; 129(2): 447–58.
< AN, Ward HA. Purification and chemical characterisation of membrane glycoproteins from rat thymocytes and brain, recognised by monoclonal antibody MRC OX 2. https://doi.org/10.1111/j.1432-1033.1982.tb07070.x>
4. Trends Immunol 2002; 23(6): 285–90.
< AN, Wright GJ, Brooke G, Brown MH. CD200 and membrane protein interactions in the control of myeloid cells. https://doi.org/10.1016/S1471-4906(02)02223-8>
5. Transplantation 2008; 86(8): 1116–24.
< Z, Chen DX, Kai Y, Khatri I, Lamptey B, Gorczynski RM. Identification of an expressed truncated form of CD200, CD200tr, which is a physiologic antagonist of CD200‑induced suppression. https://doi.org/10.1097/TP.0b013e318186fec2>
6. Nucleic Acids Res 2010; 38(19): 6684–96.
< Z, Ma X, Zhang J, Hu J, Gorczynski RM. Alternative splicing of CD200 is regulated by an exonic splicing enhancer and SF2/ASF. https://doi.org/10.1093/nar/gkq554>
<PubMed>
7. Mol Immunol 2009; 46(10): 1951–63.
< Z, Marseden PA , Gorczynski RM. Role of a distal enhancer in the transcriptional responsiveness of the human CD200 gene to interferon‑gama and tumor necrosis factor‑alpha. https://doi.org/10.1016/j.molimm.2009.03.015>
8. Mol Immunol 2006 Feb; 43(6): 579–87.
< Z, Marsden PA , Gorczynski RM. Cloning and characterization of the human CD200 promoter region. https://doi.org/10.1016/j.molimm.2005.04.014>
9. Invest Ophthalmol Vis Sci 2001; 42(1): 170–6.
AD, Broderick C, Forrester JV, Wright GJ. Distribution of OX2 antigen and OX2 receptor within retina.
10. J Immunol 2004; 173(6): 3748–54.
< F, Asselin‑Paturel C, Vacca C, et al. Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. https://doi.org/10.4049/jimmunol.173.6.3748>
11. Int Immunol 2005; 17(11): 1429–38.
< F, Orabona C, Vacca C, et al. Ligand and cytokine dependence of the immunosuppressive pathway of tryptophan catabolism in plasmacytoid dendritic cells. https://doi.org/10.1093/intimm/dxh321>
12. Int J Clin Exp Med 2009; 2(3): 212–20.
H, Wang J, Zhou X, Liu Z, Zheng SG. Induction of antigen‑specific immune tolerance by TGF‑beta‑induced CD4+Foxp3+ regulatory T cells.
13. J Virol. 2004 Jul; 78(14): 7667–76.
< M, Wright GJ, Puklavec MJ, Brown MH, Barclay AN. Human herpesvirus 8 K14 protein mimics CD200 in down‑regulating macrophage activation through CD200 receptor. https://doi.org/10.1128/JVI.78.14.7667-7676.2004>
<PubMed>
14. J Surg Res 2008; 145(1): 87–96.
< R, Boudakov I, Khatri. Peptides of CD200 modulate LPS‑induced TNF‑alpha induction and mortality in vivo. https://doi.org/10.1016/j.jss.2007.04.043>
15. Med Chem 2008; 4(6): 624–31.
< R, Boudakov I, Khatri I. A comparison of the biological properties of small molecular weight agonists and antagonists of CD200:CD200R interactions. https://doi.org/10.2174/157340608786241981>
16. J Immunol 1999; 163: 1654–60.
RM, Cattral MS, Chen Z, et al. An immunoadhesin incorporating the molecule OX‑2 is a potent immunosuppressant that prolongs allo‑ and xenograft survival.
17. Transplantation 1998; 65: 1106–14.
< RM,Chen Z, Fu XM, Zeng H. Increased expression of the novel molecule OX‑2 is involved in prolongation of murine renal allograft survival. https://doi.org/10.1097/00007890-199804270-00016>
18. J Immunol 2004; 172(12): 7744–9.
< R, Chen Z, Kai Y, Lee L, Wong S, Marsden PA . CD200 is a ligand for all members of the CD200R family of immunoregulatory molecules. https://doi.org/10.4049/jimmunol.172.12.7744>
19. Brain Res 1998; 813(2): 241–53.
< MB, Lopez‑Redondo F, Ikoma E, et al. The microglia/macrophage response in the neonatal rat facial nucleus following axiomy. https://doi.org/10.1016/S0006-8993(98)00859-2>
20. J Immunol 2005; 175(4): 2469–74.
< D, Cherwinski HM, Moshref M, Barclay AN. Recombinant CD200 protein does not bind activating proteins closely related to CD200 receptor. https://doi.org/10.4049/jimmunol.175.4.2469>
21. Science 2000; 290(5497): 1768–71.
< RM, Ruuls SR, Murphy CA, et al. Down‑regulation of the macrophage lineage through interaction with OX2 (CD200). https://doi.org/10.1126/science.290.5497.1768>
22. J Immunol 2006; 176(1): 191–199.
< MC, Cherwinski H, Bowman EP, Phillips JH, Sedgwick JD. Regulation of myeloid cell function through the CD200 receptor1. https://doi.org/10.4049/jimmunol.176.1.191>
23. Nat Struct Mol Biol 2007; 14(3): 185–93.
< R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor SF2/ASF is a proto‑oncogene. https://doi.org/10.1038/nsmb1209>
<PubMed>
24. Curr Opin Immunol 2009; 21(6): 708–14.
< L, Berent‑Maoz B, Ben‑Zimra M, Levi‑Schaffer F. Are we ready to downregulate mast cells? https://doi.org/10.1016/j.coi.2009.09.010>
25. J Innate Immun 2010; 2(2): 195–200.
< N, van Eijk M, Pouwels W, et al. Expression of the inhibitory CD200 receptor is associated with alternative macrophage activation. https://doi.org/10.1159/000252803>
26. Immunogenetics. 1987; 25(2): 133–5.
< GW, Clark MJ, Hurst J, Grosveld F, Barclay AN. The gene for MRC OX‑2 membrane glycoprotein is localized on human chromosome 3. https://doi.org/10.1007/BF00364281>
27. J Immunol 2009; 183(8): 4879–86.
< R, Barclay AN, Brown MH. Essential roles for Dok2 and RasGAP in CD200 receptor‑mediated regulation of human myeloid cells. https://doi.org/10.4049/jimmunol.0901531>
<PubMed>
28. J Immunol 2010; 185(12): 7216–22.
< R, Brown MH. Downstream of tyrosine kinase 1 and 2 play opposing roles in CD200 receptor signaling. https://doi.org/10.4049/jimmunol.1002858>
<PubMed>
29. Cell Host Microbe 2010; 8(3): 236–47.
< S, Plüddemann A, Hoe JC, et al. Immune inhibitory ligand CD200 induction by TLRs and NLRs limits macrophage activation to protect the host from meningococcal septicemia. https://doi.org/10.1016/j.chom.2010.08.005>
30. Curr Pharm Des 2009; 15(1): 64–99.
< WT, Tsunoda I. The importance of NAD in multiple sclerosis. https://doi.org/10.2174/138161209787185751>
<PubMed>
31. Sci Signal 2010; 3(122): ra38.
< Q, Malhotra S, Torchia JA, Kerr WG, Coggeshall KM, Humphrey MB. EM2‑ and DAP12‑dependent activation of PI3K requires DAP10 and is inhibited by SHIP. https://doi.org/10.1126/scisignal.2000500>
<PubMed>
32. Mol Immunol 2008; 45(4): 1126–35.
< ES, de Ruiter T, Baridi A, Veninga H, Hoek RM, Meyaard L. The inhibitory CD200R is differentially expressed on human and mouse T and B lymphocytes. https://doi.org/10.1016/j.molimm.2007.07.013>
33. Mol Immunol 2008; 45(4): 1126–35.
< ES, de Ruiter T, Baridi A, Veninga H, Hoek RM, Meyaard L. The inhibitory CD200R is differentially expressed on human and mouse T and B lymphocytes. https://doi.org/10.1016/j.molimm.2007.07.013>
34. Rijkers ES, de Ruiter T, Verbrugge A, Hoek RM, Meyaard L. CD‑200R‑ mediated inhibition of FcεR induced degranulation requires at least two functional tyrosine; Biology of Inhibitory Immune Receptors – Studies on CD200R and LAIR‑1, chapter 3, Doctoral study Utrecht University 2007.
35. Blood 2004; 103(7): 2691–8.
< MD, Olasz E, Woodliff JE, et al. CD200 is a novel p53‑target gene involved in apoptosis‑associated immune tolerance. https://doi.org/10.1182/blood-2003-09-3184>
36. J Invest Dermatol 2004; 123(5): 880–7.
< MD, Olasz EB, Yancey KB, et al. Expression of CD200 on epithelial cells of the murine hair follicle: a role in tissue‑specific immune tolerance? https://doi.org/10.1111/j.0022-202X.2004.23461.x>
37. J Cell Physiol 2009; 219(3): 698–706.
< C, Curtarello M, Calistri A, Sartori E, et al. vOX2 glycoprotein of human herpesvirus 8 modulates human primary macrophages activity. https://doi.org/10.1002/jcp.21722>
38. Cancer J 2010; 16(4): 354–9.
< H, Mediavilla‑Varela M, Antonia S.Indoleamine 2,3‑dioxygenase: is it an immune suppressor? https://doi.org/10.1097/PPO.0b013e3181eb3343>
<PubMed>
39. Gene 2003; 311: 99–104.
< JM, de la Torre R, Ortega MA, et al. Characterization of human CD200 glycoprotein receptor gene located on chromosome 3q12‑13. https://doi.org/10.1016/S0378-1119(03)00562-6>
40. J Biol Chem 2004; 279(52): 54117–23.
< D, Rosen DB, Lanier LL, Locksley RM. CD200 receptor family members represent novel DAP12‑associated activating receptors on basophils and mast cells. https://doi.org/10.1074/jbc.M406997200>
41. J Immunol. 2005 Jan 1; 174(1): 143–54.
< N, McConachie K, Calder C, et al. Enhanced tolerance to autoimmune uveitis in CD200‑deficient mice correlates with a pronounced Th2 switch in response to antigen challenge. https://doi.org/10.4049/jimmunol.174.1.143>
<PubMed>
42. Curr Med Chem 2011; 18(15): 2234–9.
< S, Ocadlikova D, Evangelisti C, Parisi S, Curti A. Induction of regulatory T cells by dendritic cells through indoleamine 2,3‑dioxygenase: A potent mechanism of acquired peripheral tolerance. https://doi.org/10.2174/092986711795656054>
43. J Neurochem 1984; 43(4): 1061–7.
< M, Barclay AN. Localisation of the MRC OX‑2 glycoprotein on the surfaces of neurones. https://doi.org/10.1111/j.1471-4159.1984.tb12844.x>
44. J Immunol 2003; 171(6): 3034–46.
< GJ, Cherwinski H, Foster‑Cuevas M, et al. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. https://doi.org/10.4049/jimmunol.171.6.3034>
45. Immunity 2000; 13(2): 233–42.
< GJ, Puklavec MJ, Willis AC, et al. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. https://doi.org/10.1016/S1074-7613(00)00023-6>
46. J Leukoc Biol 2006; 79(2): 363–8.
< S, Phillips H. Identification of tyrosine residues crucial for CD200R‑mediated inhibition of mast cell activation. https://doi.org/10.1189/jlb.0705398>