Acta Med. 2012, 55: 3-11

https://doi.org/10.14712/18059694.2015.67

Genome‑Wide Association Studies in Schizophrenia, and Potential Etiological and Functional Implications of Their Results

Ladislav Hosáka,b, Petr Šilhanb, Jiřina Hosákováb

aCharles University in Prague, Faculty of Medicine in Hradec Králové, and University Hospital Hradec Králové, Czech Republic: Department of Psychiatry
bUniversity of Ostrava, Faculty of Medicine, and University Hospital Ostrava, Czech Republic: Department of Clinical Studies and Department of Psychiatry

Received January 9, 2012
Accepted October 10, 2012

References

1. Alkelai A, Lupoli S, Greenbaum L et al. Identification of new schizophrenia susceptibility loci in an ethnically homogenous, family‑based, Arab‑Israeli sample. FASE B J 2011; 25: 4011–23. <https://doi.org/10.1096/fj.11-184937>
2. Alkelai A, Lupoli S, Greenbaum L et al. DOCK4 and CEACA M21 as novel schizophrenia candidate genes in the Jewish population. Int J Neuropsychopharmacol 2011 (in print).
3. Allen AJ, Griss ME, Folley BS, Hawkins KA, Pearlson GD. Endophenotypes in schizophrenia: a selective review. Schizophr Res 2009; 109: 24–37. <https://doi.org/10.1016/j.schres.2009.01.016> <PubMed>
4. Athanasiu L, Mattingsdal M, Kähler AK et al. Gene variants associated with schizophrenia in a Norwegian genome‑wide study are replicated in a large European cohort. J Psychiatr Res 2010; 44: 748–53. <https://doi.org/10.1016/j.jpsychires.2010.02.002> <PubMed>
5. Bennett MR. Schizophrenia: Susceptibility genes, dendritic‑spine pathology and gray matter loss. Prog Neurobiol 2011 (in print).
6. Berretta S. Extracellular matrix abnormalities in schizophrenia. Neuropharmacology 2011 (in print).
7. Bertolino A, Blasi G. Review. The Genetics of Schizophrenia. Neuroscience 2009; 164: 288–99.
8. Bondy B. Genetics in psychiatry: are the promises met? World J Biol Psychiatry 2011; 12: 81–8. <https://doi.org/10.3109/15622975.2010.546428>
9. Caldwell CE, Gottesman JI. Schizophrenics kill themselves too: a review of risk factors for suicide. Schizophr Bull 1990; 16: 571–89. <https://doi.org/10.1093/schbul/16.4.571>
10. Chen J, Lee G, Fanous AH et al. Two non‑synonymous markers in PTPN 21, identified by genome‑wide association study data‑mining and replication, are associated with schizophrenia. Schizophr Res 2011; 131: 43–51. <https://doi.org/10.1016/j.schres.2011.06.023> <PubMed>
11. Crespi BJ, Thiselton DL. Comparative immunogenetics of autism and schizophrenia. Genes Brain Behav 2011 (in print).
12. Duan J, Sanders AR, Gejman PV. Genome‑wide approaches to schizophrenia. Brain Res Bull 2010; 83: 93–102. <https://doi.org/10.1016/j.brainresbull.2010.04.009> <PubMed>
13. Hashimoto R, Ohi K, Yasuda Y et al. The impact of a genome‑wide supported psychosis variant in the ZNF804A gene on memory function in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 1459–64. <https://doi.org/10.1002/ajmg.b.31123>
14. Ikeda M, Aleksic B, Kinoshita Y et al. Genome‑wide association study of schizophrenia in a Japanese population. Biol Psychiatry 2011; 69: 472–8. <https://doi.org/10.1016/j.biopsych.2010.07.010>
15. International Schizophrenia Consortium, Purcell SM, Wray NR et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–52.
16. Kempf L, Nicodemus KK, Kolachana B et al. Functional polymorphisms in PRODH are associated with risk and protection for schizophrenia and frontostriatal structure and function. PLoS Genet 2008; 4: e1000252. <https://doi.org/10.1371/journal.pgen.1000252> <PubMed>
17. Kim Y, Zerwas S, Trace SE, Sullivan PF. Schizophrenia genetics: where next? Schizophr Bull 2011; 37: 456–63. <https://doi.org/10.1093/schbul/sbr031> <PubMed>
18. Kirov G, Zaharieva I, Georgieva L et al. A genome‑wide association study in 574 schizophrenia trios using DNA pooling. Mol Psychiatry 2009; 14: 796–803. <https://doi.org/10.1038/mp.2008.33>
19. Klein RJ, Zeiss C, Chevy EY et al. Complement factor H polymorphism in agerelated macular degeneration. Science 2005; 308: 385–9. <https://doi.org/10.1126/science.1109557> <PubMed>
20. Krug A, Krach S, Jansen A et al. The Effect of Neurogranin on Neural Correlates of Episodic Memory Encoding and Retrieval. Schizophr Bull 2011 (in print).
21. Lee KW, Woon PS, Teo YY, Sim K. Genome wide association studies (GWAS ) and copy number variation (CNV) studies of the major psychoses: What have we learnt? Neurosci Biobehav Rev 2011 (in print).
22. Lencz T, Morgan TV, Athanasiou M et al. Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Mol Psychiatry 2007; 12: 572–80. <https://doi.org/10.1038/sj.mp.4001983>
23. Lennertz L, Quednow BB, Benninghoff J, Wagner M, Maier W, Mössner R. Impact of TCF 4 on the genetics of schizophrenia. Eur Arch Psychiatry Clin Neurosci 2011 (in print).
24. Li T, Ma X, Hu X et al. PRODH gene is associated with executive function in schizophrenic families. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 654–7. <https://doi.org/10.1002/ajmg.b.30648>
25. Ma X, Deng W, Liu X et al. A genome‑wide association study for quantitative traits in schizophrenia in China. Genes Brain Behav 2011 (in print).
26. Müller N. COX‑2 inhibitors as antidepressants and antipsychotics: clinical evidence. Curr Opin Investig Drugs 2010; 11: 31–42.
27. Murray RM, Jones PB, Susser E, van Os J, Cannon M (eds). The Epidemiology of Schizophrenia. 1st ed. Cambridge: Cambridge University Press, 2003: 470.
28. National Center for Biotechnology Information, U.S. National Library of Medicine. Gene. (Accessed October 2, 2011, at http://www.ncbi.nlm.nih.gov/gene/)
29. National Center for Biotechnology Information, U.S. National Library of Medicine. PubMed. (Accessed October 4, 2011, at http://www.ncbi.nlm.nih.gov/sites/entrez)
30. National Human Genome Research Institute. A Catalog of Published GenomeWide Association Studies. (Accessed September 25, 2011, at http://www.genome.gov/gwastudies/)
31. Need AC, Ge D, Weale ME et al. A genome‑wide investigation of SNPs and CNV s in schizophrenia. PLoS Genet 2009; 5: e1000373. <https://doi.org/10.1371/journal.pgen.1000373> <PubMed>
32. Nurnberger JI, Berrettini W. Psychiatric Genetics. 1st ed. London: Chapman and Hall, 1998: 164.
33. O’Donovan MC, Craddock N, Norton N et al. Identification of loci associated with schizophrenia by genome‑wide association and follow‑up. Nat Genet 2008; 40: 1053–5. <https://doi.org/10.1038/ng.201>
34. Pitcher GM, Kalia LV , Ng D et al. Schizophrenia susceptibility pathway neuregulin 1‑ErbB4 suppresses Src upregulation of NMDA receptors. Nat Med 2011; 17: 470–8. <https://doi.org/10.1038/nm.2315> <PubMed>
35. Psychiatric GWAS Consortium Coordinating Committee. Genomewide Association Studies: History, Rationale, and Prospects for Psychiatric Disorders. Am J Psychiatry 2009; 166: 540–56.
36. Quednow BB, Ettinger U, Mössner R et al. The schizophrenia risk allele C of the TCF4 rs9960767 polymorphism disrupts sensorimotor gating in schizophrenia spectrum and healthy volunteers. J Neurosci 2011; 31: 6684–91. <https://doi.org/10.1523/JNEUROSCI.0526-11.2011> <PubMed>
37. Rietschel M, Mattheisen M, Degenhardt F et al. Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. Mol Psychiatry 2011 (in print).
38. Roussos P, Katsel P, Davis KL et al. Molecular and Genetic Evidence for Abnormalities in the Nodes of Ranvier in Schizophrenia. Arch Gen Psychiatry 2011 (in print).
39. Schwab SG, Wildenauer DB. Update on key previously proposed candidate genes for schizophrenia. Curr Opin Psychiatry 2009; 22: 147–53. <https://doi.org/10.1097/YCO.0b013e328325a598>
40. Shi J, Levinson DF, Duan J et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009; 460: 753–7. <https://doi.org/10.1038/nature08192> <PubMed>
41. Shifman S, Johannesson M, Bronstein M et al. Genome‑wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genet 2008; 4: e28. <https://doi.org/10.1371/journal.pgen.0040028> <PubMed>
42. Stefansson H, Ophoff RA, Steinberg S et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744–7. <https://doi.org/10.1038/nature08186> <PubMed>
43. Sullivan PF, Lin D, Tzeng JY et al. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol Psychiatry 2008; 13: 570–84. <https://doi.org/10.1038/mp.2008.25> <PubMed>
44. Walsh T, McClellan JM, McCarthy SE et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–43. <https://doi.org/10.1126/science.1155174>
45. Wang Z, Wei J, Zhang X et al. A review and re‑evaluation of an association between the NOTCH4 locus and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 902–6. <https://doi.org/10.1002/ajmg.b.30383>
46. Weizmann Institute of Science. GeneCards. The Human Gene Compendium. (Accessed September 30, 2011, at http://www.genecards.org/)
47. Wikipedia. The Free Encyclopedia. (Accessed September 24, 2011, at http://en.wikipedia.org/wiki/)
48. Yamada K, Iwayama Y, Hattori E et al. Genome‑wide association study of schizophrenia in Japanese population. PLoS One 2011; 6: e20468. <https://doi.org/10.1371/journal.pone.0020468> <PubMed>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive