Acta Med. 2011, 54: 73-75

https://doi.org/10.14712/18059694.2016.22

Recovery from Hypoxic Pulmonary Hypertension in Rats

Hana Maxováa,b, Alena Baňasováa,b, Viera Povýšilováa, Jan Hergeta,c, Martin Vízeka,b

aCharles University in Prague, 2nd Faculty of Medicine, Cardiovascular Research Centre, Prague, Czech Republic
bCharles University in Prague, 2nd Faculty of Medicine, Department of Pathological Physiology, Czech Republic
cCharles University in Prague, 2nd Faculty of Medicine, Department of Physiology, Czech Republic

Received October 26, 2010
Accepted February 15, 2011

References

1. Abraham AS, Kay JM, Cole RB, Pincock AC. Haemodynamic and pathological study of the effect of chronic hypoxia and subsequent recovery of the heart and pulmonary vasculature of the rat. Cardiovasc Res. 1971 Jan;5(1):95–102. <https://doi.org/10.1093/cvr/5.1.95>
2. Banasova A, Maxova H, Hampl V, et al. Prevention of mast cell degranulation by disodium cromoglycate attenuates the development of hypoxic pulmonary hypertension in rats exposed to chronic hypoxia. Respiration. 2008;76(1):102–7.
3. Bonnet P, Bonnet S, Boissiere J, et al. Chronic hypoxia induces nonreversible right ventricle dysfunction and dysplasia in rats. Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1023–8. <https://doi.org/10.1152/ajpheart.00802.2003>
4. Fried R, Reid LM. Early recovery from hypoxic pulmonary hypertension: a structural and functional study. J Appl Physiol. 1984 Oct;57(4):1247–53. <https://doi.org/10.1152/jappl.1984.57.4.1247>
5. Hampl V, Herget J. Perinatal hypoxia increases hypoxic pulmonary vasoconstriction in adult rats recovering from chronic exposure to hypoxia. Am Rev Respir Dis. 1990 Sep;142(3):619–24. <https://doi.org/10.1164/ajrccm/142.3.619>
6. Herget J, Novotná J, Bíbová J, Povýšilová V, Vaňková M, Hampl V. Metalloproteinase inhibition by Batimastat attenuates pulmonary hypertension in chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol. 2003 Jul;285(1):L199–208. <https://doi.org/10.1152/ajplung.00167.2002>
7. Herget J, Paleček F. Pulmonary arterial blood pressure in closed chest rats. Changes after catecholamines, histamine and serotonin. Arch Int Pharmacodyn Ther. 1972;198:107–17.
8. Herget J, Suggett AJ, Leach E, Barer GR. Resolution of pulmonary hypertension and other features induced by chronic hypoxia in rats during complete and intermittent normoxia. Thorax. 1978 Aug;33(4):468–73. <https://doi.org/10.1136/thx.33.4.468> <PubMed>
9. Kay JM, Suyama KL, Keane PM. Effect of intermittent normoxia on muscularization of pulmonary arterioles induced by chronic hypoxia in rats. Am Rev Respir Dis. 1981 Apr;123(4 Pt 1):454–8.
10. Lachmanova V, Hnilickova O, Povysilova V, Hampl V, Herget J. N-acetylcysteine inhibits hypoxic pulmonary hypertension most effectively in the initial phase of chronic hypoxia. Life Sci. 2005 May 27;77(2):175–82. <https://doi.org/10.1016/j.lfs.2004.11.027>
11. Maxova H, Vasilkova M, Novotna J, et al. Prevention of mast cell degranulation by disodium cromoglycate delayed the regression of hypoxic pulmonary hypertension in rats. Respiration. 2010;80(4):335–9. <https://doi.org/10.1159/000312403>
12. McLoughlin P, McMurtry I. Last Word on Point:Counterpoint „Chronic hypoxiainduced pulmonary hypertension does/does not lead to loss of pulmonary vasculature“. J Appl Physiol. 2007 Oct;103(4):1456. <https://doi.org/10.1152/japplphysiol.00716.2007>
13. McMurtry IF, Reeves JT, Will DH, Grover RF. Reduction of bovine pulmonary hypertension by normoxia, verapamil and hexoprenaline. Experientia. 1977 Sep 15;33(9):1192–4. <https://doi.org/10.1007/BF01922322>
14. Naeije R. Physiological adaptation of the cardiovascular system to high altitude. Prog Cardiovasc Dis. 2010 May-Jun;52(6):456–66. <https://doi.org/10.1016/j.pcad.2010.03.004>
15. Nagaoka T, Morio Y, Casanova N, et al. Rho/Rho kinase signaling mediates increased basal pulmonary vascular tone in chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol. 2004 Oct;287(4):L665–72. <https://doi.org/10.1152/ajplung.00050.2003>
16. Novotna J, Bibova J, Hampl V, Deyl Z, Herget J. Hyperoxia and recovery from hypoxia alter collagen in peripheral pulmonary arteries similarly. Physiol Res. 2001;50(2):153–63.
17. Ostadal B, Prochazka J, Pelouch V, Urbanova D, Widimsky J, Stanek V. Pulmonary Vascular Changes and their reversibility Induced by Intermittent High Altitude Exposure. Prog Resp Res. 1985;20:17–25. <https://doi.org/10.1159/000410417>
18. Pelouch V, Kolar F, Ost’adal B, Milerova M, Cihak R, Widimsky J. Regression of chronic hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and fibrosis: effect of enalapril. Cardiovasc Drugs Ther. 1997 Apr;11(2):177–85. <https://doi.org/10.1023/A:1007788915732>
19. Rabinovitch M, Gamble WJ, Miettinen OS, Reid L. Age and sex influence on pulmonary hypertension of chronic hypoxia and on recovery. Am J Physiol. 1981 Jan;240(1):H62–72.
20. Ressl J, Urbanova D, Widimsky J, Ostadal B, Pelouch V, Prochazka J. Možnost reverzibility chronické plicní hypertenze. Experimentální studie u krys. Čas Lék čes. 1975;14(114):435–8.
21. Ressl J, Urbanova D, Widimsky J, Ostadal B, Pelouch V, Prochazka J. Reversibility of pulmonary hypertension and right ventricular hypertrophy induced by intermittent high altitude hypoxia in rats. Respiration. 1974 Jan;31(1):38–46. <https://doi.org/10.1159/000193097>
22. Tozzi CA, Thakker-Varia S, Yu SY, et al. Mast cell collagenase correlates with regression of pulmonary vascular remodeling in the rat. Am J Respir Cell Mol Biol. 1998;18(4):497–510. <https://doi.org/10.1165/ajrcmb.18.4.2536>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive