Acta Med. 2011, 54: 3-8

https://doi.org/10.14712/18059694.2016.9

Caco-2 Cells, Biopharmaceutics Classification System (BCS) and Biowaiter

Libuše Smetanová, Věra Štětinová, Zbyněk Svoboda, Jaroslav Květina

Institute of Experimental Biopharmaceutics, Joint Research Centre of PRO.MED.CS Praha a.s. and the Academy of Sciences of the Czech Republic, Heyrovského 1207, Hradec Králové, Czech Republic

Received June 30, 2010
Accepted December 6, 2010

References

1. Alt A, Potthast H, Moessinger J, Sickmüller B, Oeser H. Biopharmaceutical characterization of sotalol-containing oral immediate release drug products. Eur J Pharm Biopharm. 2004;58:145–50. <https://doi.org/10.1016/j.ejpb.2004.02.007>
2. Amidon GJ, Lennernäs H, Shap VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20. <https://doi.org/10.1023/A:1016212804288>
3. Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Comm. 1991;175:880–5. <https://doi.org/10.1016/0006-291X(91)91647-U>
4. Artursson P, Karlsson J, Ocklind G, Schipper N. Studying transport process in absorptive epithelia. In: Shaw AJ, editor. Epithelial cell culture – a practical approach, Oxford University Press, 1996:111–33.
5. Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev. 2001;46:27–43. <https://doi.org/10.1016/S0169-409X(00)00128-9>
6. Artursson P, Tavelin S. Caco-2 and emerging alternatives for prediction of intestinal drug transport: a general overview. In: H. van de Waterbeemd, H. Lennernas and P. Artursson, Editors, Drug Bioavailability: Estimation of Solubility, Permeability, Absorption and Bioavailability, Wiley-VCH Verlag GmbH and Co. KgaA, Weinheim, 2003:72–83.
7. Balimane PV, Han YH, Chong S. Current industrial practices of assessing permeability and P-glycoprotein interaction. AAPS J. 2006;8:E1–13. <https://doi.org/10.1208/aapsj080101> <PubMed>
8. Bourdet DL, Thakker DR. Saturable absorptive transport of the hydrophilic organic cation ranitidine in Caco-2 cells: role of pH-dependent organic cation uptake system and P-glycoprotein. Pharm Res. 2006;23:1165–77. <https://doi.org/10.1007/s11095-006-0251-4>
9. Clayburgh DR, Shen L, Turner JR. A Porous Defense: the Leaky Epithelial Barrier in Intestinal Disease. Laboratory Investigation 2004;84:282–91. <https://doi.org/10.1038/labinvest.3700050>
10. Custodio JM, Wu CY, Benet LZ. Predicting drug disposition, absorption/elimination/ transporter interplay and the role of food on drug absorption. Adv Drug Deliv Rev. 2008;60:717–33. <https://doi.org/10.1016/j.addr.2007.08.043> <PubMed>
11. Delie F, Rubas W. A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: advantages and limitations of the Caco-2 model. Crit Rev Ther Drug Carrier Syst. 1997;14:221–86. <https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v14.i3.20>
12. Doherty MM, Charman WN. The mucosa of the small intestine: how clinically relevant as an organ of drug metabolism? Clin Pharmacokinet. 2002;41:235–53. <https://doi.org/10.2165/00003088-200241040-00001>
13. EMEA. European Medicines Agency: Guideline on the investigation of bioequivalence. Committee for medicinal products for human use (CPMP/EWP/QWP/ 1401/98 Rev. 1/ Corr.), London, January 2010, 25–7. http://www.ema.europa.eu/ pdfs/human/qwp/140198enrev1fin.pdf.
14. FDA. Food and Drug Administration, Guidance for Industry: Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System, 2000. Retrieved from http://www.fda.gov/downloads/Drugs/GuidanceCompliance RegulatoryInformation/Guidances/UCM070246.pdf.
15. Fleet JC, Wood RJ. Specific 1,25(OH)2D3-mediated regulation of transcellular calcium transport in Caco-2 cells. Am J Physiol 1999;276:G958–64.
16. Fossati L, Dechaume R, Hardillier E, et al. Use of simulated intestinal fluid for Caco-2 permeability assay of lipophilic drugs. Int J Pharm. 2008;360:148–55. <https://doi.org/10.1016/j.ijpharm.2008.04.034>
17. García-Casal MN, Leets I, Layrisse M. Beta-carotene and inhibitors of iron absorption modify iron uptake by Caco-2 cells. J Nutr. 2000;130:5–9. <https://doi.org/10.1093/jn/130.1.5>
18. Hayeshi R, Hilgendorf C, Artursson P, et al. Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur J Pharm Sci. 2008;35:383–96. <https://doi.org/10.1016/j.ejps.2008.08.004>
19. Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989;96:736–49. <https://doi.org/10.1016/0016-5085(89)90897-4>
20. Ho RH, Kim RB. Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther. 2005;78:260–77. <https://doi.org/10.1016/j.clpt.2005.05.011>
21. Kamiyama E, Sugiyama D, Nakai D, Miura S, Okazaki O. Culture period-dependent change of function and expression of ATP-binding cassette transporters in Caco-2 cells. Drug Metab Dispos. 2009;37:1956–62. <https://doi.org/10.1124/dmd.109.027490>
22. Lee K, Thakker DR. Saturable transport of H2-antagonists ranitidine and famotidine across Caco-2 cell monolayers. J Pharm Sci. 1999;88:680–7. <https://doi.org/10.1021/js980474k>
23. Lennernäs H, Abrahamsson B. The use of biopharmaceutic classification of drugs in drug discovery and development: current status and future extension. J Pharm Pharmacol. 2005;57:273–85. <https://doi.org/10.1211/0022357055263>
24. Lu Y, Heydel JM, Li X, Bratton S, Lindblom T, Radominska-Pandya A. Lithocholic acid decreases expression of UGT2B7 in Caco-2 cells: a potential role for a negative farnesoid X receptor response element. Drug Metab Dispos. 2005; 33:937–46. <https://doi.org/10.1124/dmd.104.003061> <PubMed>
25. Oostendorp RL, Beijnen JH, Schellens JH. The biological and clinical role of drug transporters at the intestinal barrier. Cancer Treat Rev. 2009;35:137–47. <https://doi.org/10.1016/j.ctrv.2008.09.004>
26. Shah P, Jogani V, Bagchi T, Misra A. Role of Caco-2 Monolayers in Prediction of Intestinal Drug Absorption. Biotechnol Prog. 2006;22:186–98. <https://doi.org/10.1021/bp050208u>
27. Shugarts;Pharm Res. 2009;26:2039–54.
28. Smetanova L, Stetinova V, Kholova D et al. Caco-2 cells and Biopharmaceutics Classification System (BCS) for prediction of transepithelial transport of xenobiotics (model drug: caffeine). Neuro Endocrinol Lett. 2009;30(Suppl. 1):101–5.
29. Stetinova V, , Smetanova L, Kholova D et al. Transepithelial transport of ambroxol hydrochloride across human intestinal Caco-2 cell monolayers. Gen Physiol Biophys. 2009;28:309–15. <https://doi.org/10.4149/gpb_2009_03_309>
30. Ungell A-L, Karlsson J. Cell culture in drug discovery: an industrial perspective. In: van de Waterbeemd H, Lennernäs H, Artursson P, editors. Drug bioavailability. Weinheim: Wiley-Vch., 2004:90–131.
31. Vachon PH, Beaulieu J-F. Transient Mosaic Patterns of Morphological and Functional Differentiation in the Caco-2 Cell Line. Gastroenterology 1992; 103:414–23. <https://doi.org/10.1016/0016-5085(92)90829-N>
32. Walle UK, Walle T. Taxol transport by human intestinal epithelial Caco-2 cells. Drug Metab Dispos. 1998;26:343–6.
33. WHO. Proposal to waive in vivo bioequivalence requirements for WHO Model List of Essential Medicines immediate-release, solid oral dosage forms. Annex 8, of WHO Expert Committee on Specification for Pharmaceutical Preparations. Geneva: World Health Organization. 2006.
34. Yu L, Zeng S. Transport characteristics of zolmitriptan in a human intestinal epithelial cell line Caco-2. J Pharm Pharmacol. 2007;59:655–60. <https://doi.org/10.1211/jpp.59.5.0005>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive