Acta Med. 2011, 54: 3-8
https://doi.org/10.14712/18059694.2016.9
Caco-2 Cells, Biopharmaceutics Classification System (BCS) and Biowaiter
References
1. Eur J Pharm Biopharm. 2004;58:145–50.
< A, Potthast H, Moessinger J, Sickmüller B, Oeser H. Biopharmaceutical characterization of sotalol-containing oral immediate release drug products. https://doi.org/10.1016/j.ejpb.2004.02.007>
2. Pharm Res. 1995;12:413–20.
< GJ, Lennernäs H, Shap VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. https://doi.org/10.1023/A:1016212804288>
3. Biochem Biophys Res Comm. 1991;175:880–5.
< P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. https://doi.org/10.1016/0006-291X(91)91647-U>
4. Artursson P, Karlsson J, Ocklind G, Schipper N. Studying transport process in absorptive epithelia. In: Shaw AJ, editor. Epithelial cell culture – a practical approach, Oxford University Press, 1996:111–33.
5. Adv Drug Deliv Rev. 2001;46:27–43.
< P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. https://doi.org/10.1016/S0169-409X(00)00128-9>
6. Artursson P, Tavelin S. Caco-2 and emerging alternatives for prediction of intestinal drug transport: a general overview. In: H. van de Waterbeemd, H. Lennernas and P. Artursson, Editors, Drug Bioavailability: Estimation of Solubility, Permeability, Absorption and Bioavailability, Wiley-VCH Verlag GmbH and Co. KgaA, Weinheim, 2003:72–83.
7. AAPS J. 2006;8:E1–13.
< PV, Han YH, Chong S. Current industrial practices of assessing permeability and P-glycoprotein interaction. https://doi.org/10.1208/aapsj080101>
<PubMed>
8. Pharm Res. 2006;23:1165–77.
< DL, Thakker DR. Saturable absorptive transport of the hydrophilic organic cation ranitidine in Caco-2 cells: role of pH-dependent organic cation uptake system and P-glycoprotein. https://doi.org/10.1007/s11095-006-0251-4>
9. Laboratory Investigation 2004;84:282–91.
< DR, Shen L, Turner JR. A Porous Defense: the Leaky Epithelial Barrier in Intestinal Disease. https://doi.org/10.1038/labinvest.3700050>
10. Adv Drug Deliv Rev. 2008;60:717–33.
< JM, Wu CY, Benet LZ. Predicting drug disposition, absorption/elimination/ transporter interplay and the role of food on drug absorption. https://doi.org/10.1016/j.addr.2007.08.043>
<PubMed>
11. Crit Rev Ther Drug Carrier Syst. 1997;14:221–86.
< F, Rubas W. A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: advantages and limitations of the Caco-2 model. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v14.i3.20>
12. Clin Pharmacokinet. 2002;41:235–53.
< MM, Charman WN. The mucosa of the small intestine: how clinically relevant as an organ of drug metabolism? https://doi.org/10.2165/00003088-200241040-00001>
13. EMEA. European Medicines Agency: Guideline on the investigation of bioequivalence. Committee for medicinal products for human use (CPMP/EWP/QWP/ 1401/98 Rev. 1/ Corr.), London, January 2010, 25–7. http://www.ema.europa.eu/ pdfs/human/qwp/140198enrev1fin.pdf.
14. FDA. Food and Drug Administration, Guidance for Industry: Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System, 2000. Retrieved from http://www.fda.gov/downloads/Drugs/GuidanceCompliance RegulatoryInformation/Guidances/UCM070246.pdf.
15. Am J Physiol 1999;276:G958–64.
JC, Wood RJ. Specific 1,25(OH)2D3-mediated regulation of transcellular calcium transport in Caco-2 cells.
16. Int J Pharm. 2008;360:148–55.
< L, Dechaume R, Hardillier E, et al. Use of simulated intestinal fluid for Caco-2 permeability assay of lipophilic drugs. https://doi.org/10.1016/j.ijpharm.2008.04.034>
17. J Nutr. 2000;130:5–9.
< MN, Leets I, Layrisse M. Beta-carotene and inhibitors of iron absorption modify iron uptake by Caco-2 cells. https://doi.org/10.1093/jn/130.1.5>
18. Eur J Pharm Sci. 2008;35:383–96.
< R, Hilgendorf C, Artursson P, et al. Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. https://doi.org/10.1016/j.ejps.2008.08.004>
19. Gastroenterology 1989;96:736–49.
< IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. https://doi.org/10.1016/0016-5085(89)90897-4>
20. Clin Pharmacol Ther. 2005;78:260–77.
< RH, Kim RB. Transporters and drug therapy: implications for drug disposition and disease. https://doi.org/10.1016/j.clpt.2005.05.011>
21. Drug Metab Dispos. 2009;37:1956–62.
< E, Sugiyama D, Nakai D, Miura S, Okazaki O. Culture period-dependent change of function and expression of ATP-binding cassette transporters in Caco-2 cells. https://doi.org/10.1124/dmd.109.027490>
22. J Pharm Sci. 1999;88:680–7.
< K, Thakker DR. Saturable transport of H2-antagonists ranitidine and famotidine across Caco-2 cell monolayers. https://doi.org/10.1021/js980474k>
23. J Pharm Pharmacol. 2005;57:273–85.
< H, Abrahamsson B. The use of biopharmaceutic classification of drugs in drug discovery and development: current status and future extension. https://doi.org/10.1211/0022357055263>
24. Drug Metab Dispos. 2005; 33:937–46.
< Y, Heydel JM, Li X, Bratton S, Lindblom T, Radominska-Pandya A. Lithocholic acid decreases expression of UGT2B7 in Caco-2 cells: a potential role for a negative farnesoid X receptor response element. https://doi.org/10.1124/dmd.104.003061>
<PubMed>
25. Cancer Treat Rev. 2009;35:137–47.
< RL, Beijnen JH, Schellens JH. The biological and clinical role of drug transporters at the intestinal barrier. https://doi.org/10.1016/j.ctrv.2008.09.004>
26. Biotechnol Prog. 2006;22:186–98.
< P, Jogani V, Bagchi T, Misra A. Role of Caco-2 Monolayers in Prediction of Intestinal Drug Absorption. https://doi.org/10.1021/bp050208u>
27. Shugarts;Pharm Res. 2009;26:2039–54.
28. Neuro Endocrinol Lett. 2009;30(Suppl. 1):101–5.
L, Stetinova V, Kholova D et al. Caco-2 cells and Biopharmaceutics Classification System (BCS) for prediction of transepithelial transport of xenobiotics (model drug: caffeine).
29. Gen Physiol Biophys. 2009;28:309–15.
< V, , Smetanova L, Kholova D et al. Transepithelial transport of ambroxol hydrochloride across human intestinal Caco-2 cell monolayers. https://doi.org/10.4149/gpb_2009_03_309>
30. Ungell A-L, Karlsson J. Cell culture in drug discovery: an industrial perspective. In: van de Waterbeemd H, Lennernäs H, Artursson P, editors. Drug bioavailability. Weinheim: Wiley-Vch., 2004:90–131.
31. Gastroenterology 1992; 103:414–23.
< PH, Beaulieu J-F. Transient Mosaic Patterns of Morphological and Functional Differentiation in the Caco-2 Cell Line. https://doi.org/10.1016/0016-5085(92)90829-N>
32. Drug Metab Dispos. 1998;26:343–6.
UK, Walle T. Taxol transport by human intestinal epithelial Caco-2 cells.
33. WHO. Proposal to waive in vivo bioequivalence requirements for WHO Model List of Essential Medicines immediate-release, solid oral dosage forms. Annex 8, of WHO Expert Committee on Specification for Pharmaceutical Preparations. Geneva: World Health Organization. 2006.
34. J Pharm Pharmacol. 2007;59:655–60.
< L, Zeng S. Transport characteristics of zolmitriptan in a human intestinal epithelial cell line Caco-2. https://doi.org/10.1211/jpp.59.5.0005>