Acta Med. 2010, 53: 85-91
https://doi.org/10.14712/18059694.2016.65
A Comparison of the Potency of Newly Developed Oximes (K347, K628) and Currently Available Oximes (Obidoxime, HI-6) to Counteract Acute Neurotoxic Effects of Tabun in Rats
References
1. Chem Listy 1999; 93:27–31.
J, Bajgar J. Tabun – reappearance 50 years later (in Czech).
2. Bas Clin Pharmacol Toxicol 2004; 95:81–6.
< J, Kuca K, Kassa J. Specification of the structure of oximes able to reactivate tabun-inhibited acetylcholinesterase. https://doi.org/10.1111/j.1742-7843.2004.950207.x>
3. Eur J Pharmacol 1997; 332:43–52.
< G, Karlsson L, Waara L, Wee Ang K, Goransson-Nyberg A. Pharmacokinetics and effects of HI-6 in blood and brain of soman-intoxicated rats: a microdialysis study. https://doi.org/10.1016/S0014-2999(97)01058-3>
4. J Appl Toxicol 1994; 14:317–31.
< RM. Review of oximes available for treatment of nerve agent poisoning. https://doi.org/10.1002/jat.2550140502>
5. J Appl Toxicol 2005; 3:139–45.
V, Kuca K, Jun D. Prediction of a new broad-spectrum reactivator capable of reactivating acetylcholinesterase inhibited by nerve agents.
6. Biochemistry 2006; 45:74–81.
< F, Akfur C, Tunemalm AK, Lundberg S. Structural changes of phenylalanine 338 and histidine 447 revealed by the crystal structures of tabun-inhibited murine acetylcholinesterase. https://doi.org/10.1021/bi051286t>
7. Homeostasis 1995; 36:19–25.
E, Hornychova M. Clustering of neurobehavioral measures of toxicity.
8. Cent Eur J Pub Health 1995; 3:210–8.
M, Frantik E, Kubat J, Formanek J. Neurotoxicity profile of supermethrin, a new pyrethroid insecticide.
9. Voj Preg 1993; 50:451–6.
M. Anticholinesterase activity and delayed neurotoxic effects of tabun in hens.
10. Toxicol Lett 1996; 85:35–9.
< M, Maksimovic M, Kilibarda V, Jovanovic D, Savic D. Oxime-induced reactivation of acetycholinesterase inhibited by phosphoramidates. https://doi.org/10.1016/0378-4274(96)03634-X>
11. J Toxicol Clin Toxicol 2002; 40:803–16.
< J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. https://doi.org/10.1081/CLT-120015840>
12. Toxicology 1999; 132:111–8.
< J, Cabal J. A comparison of the efficacy of a new asymmetric bispyridinium oxime BI-6 with currently available oximes and H oximes against soman by in vitro and in vivo methods. https://doi.org/10.1016/S0300-483X(98)00146-2>
13. Biologia 60/Suppl. 2005; 17:77–9.
J, Cabal J, Kuca K. A comparison of the efficacy of currently available oximes against tabun in rats.
14. J Toxicol Environ Health, Part A 2007; 70: 1556–67.
< J, Karasova J. The evaluation of the neuroprotective effects of bispyridinium oximes in tabun-poisoned rats. https://doi.org/10.1080/15287390701384775>
15. Pharmacol. Toxicol. 92: 258–264, 2003.
< J, Krejcova G: Neuroprotective effects of currently used antidotes in tabunpoisoned rats. https://doi.org/10.1034/j.1600-0773.2003.920602.x>
16. Curr Org Chem 2007; 11:267–83.
< J, Kuca K, Bartosova L, Kunesova G. The development of new structural analogues of oximes for the antidotal treatment of poisoning by nerve agents and the comparison of their reactivating and therapeutic efficacy with currently available oximes. https://doi.org/10.2174/138527207779940874>
17. J Appl Biomed 2006; 4:123–34.
J, Kunesova G. Comparison of the neuroprotective effects of the newly developed oximes (K027, K048) with trimedoxime in tabun-poisoned rats.
18. Toxicol Lett 1994; 70:169–79.
< I, Stewart JR. A comparison of the efficacy of HI-6 and 2-PAM against soman, tabun, sarin and VX in the rabbit. https://doi.org/10.1016/0378-4274(94)90121-X>
19. Mini-Rev Med Chem 2006; 6:109–20.
< K, Jun D, Musilek K. Structural requirements of acetylcholinesterase reactivators. https://doi.org/10.2174/138955706776073510>
20. J Appl Biomed 2009; 7:143–9.
K, Musilek K, Jun D, Pohanka M, Zdarova Karasova J, Novotny L, Musilova L. Could oxime HI-6 really be considered as „broad-spectrum“ antidote?
21. Lotti M. Organophosphorus compounds. In: Spencer PS, Schaumburg HH (eds). Experimental and Clinical Neurotoxicology. New York: Oxford University Press 2000:898–925.
22. Pharmacol Ther 1993; 58:51–66.
< TC. Organophosphate poisoning. https://doi.org/10.1016/0163-7258(93)90066-M>
23. Neurotoxicology 1997; 18: 929–38.
VC, Tilson H, McPhail RC, Becking GC, Cuomo V, Frantik E, Kulig BM, Winneke, G. The IPCS collaborative study on neurobehavioral screening methods: II. Protocol design and testing procedures.
24. J Appl Biomed 2007; 5:25–30.
K, Kuca K, Jun D, Dolezal M. In vitro reactivation potency of bispyridinium (E)-but-ene linked acetylcholinesterase reactivators against tabun-inhibited acetylcholinesterase.
25. Bioorg Med Chem 2008; 16: 8218–23.
< K, Kucera J, Jun D, Dohnal V, Opletalova V, Kuca K. Monoquaternary pyridinium salts with modified side chain – synthesis and evaluation on model of tabun- and paraoxon-inhibited acetylcholinesterase. https://doi.org/10.1016/j.bmc.2008.07.036>
26. Biochem Pharmacol 1986; 35:1505–10.
< G, Artursson E, Bucht G. Reactivation of nerve agent inhibited acetylcholinesterase by HI-6 and obidoxime. https://doi.org/10.1016/0006-2952(86)90116-4>
27. Roth Z, Josifko M, Maly V, Trcka V. Statistical Methods in Experimental Medicine (in Czech), SZN Prague, 1962.
28. Neurochem Res 2003; 28:1401–7.
< K, Matsubara K, Shimizu K, Shiono H, Seto Y, Tsuge K, Toshibo M, Sakai I, Mukoyama H, Takatori T. Pralidoxime iodide (2-PAM) penetrates across the blood-brain barrier. https://doi.org/10.1023/A:1024960819430>
29. Taylor P. Anticholinesterase agents. In: Hardman JG, Limbird LE (eds). The Pharmacological Basis of Therapeutics. New York: McGraw Hill 1996:161–76.
30. Arch Toxicol 1998; 72: 237–43.
< F, Widmann R, Knopff O, Szinicz L. Reactivating potency of obidoxime, pralidoxime, HI-6 and HLö-7 in human erythrocyte acetylcholinesterase inhibited by highly toxic organophosphorus compounds. https://doi.org/10.1007/s002040050495>