Acta Med. 2010, 53: 13-17

https://doi.org/10.14712/18059694.2016.57

Ataxia-telangiectasia Mutated Kinase (ATM) as a Central Regulator of Radiation-induced DNA Damage Response

Aleš Tichýa,b, Jiřina Vávrováb, Jaroslav Pejchalc, Martina Řezáčováa

aCharles University in Praha, Faculty of Medicine and University Hospital Hradec Králové, Department of Medical Biochemistry, Hradec Králové, Czech Republic
bUniversity of Defence in Brno, Faculty of Military Health Sciences in Hradec Králové, Department of Radiobiology, Hradec Králové, Czech Republic
cUniversity of Defence in Brno, Faculty of Military Health Sciences in Hradec Králové, Centre of Advanced Studies, Hradec Králové, Czech Republic

Received February 10, 2010
Accepted March 8, 2010

References

1. Bakkenist C, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimmer dissociation. Nature 2003; 421:499–506. <https://doi.org/10.1038/nature01368>
2. Bakalkin G, Yakovleva T, Selivanova G, Magnusson KP, Szekely L, Kiseleva E, Klein G, Terenius L, Wiman KG. p53 binds single-stranded DNA ends through the C-terminal domain and internal DNA segments via the middle domain. Nucleic Acids Res 1995; 23:362–9. <https://doi.org/10.1093/nar/23.3.362> <PubMed>
3. Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 1998; 281:1674–7. <https://doi.org/10.1126/science.281.5383.1674>
4. Bao S, Tibbetts RS, Brumbaugh KM, Fang Y, Richardson DA, Ali A, Chen SM, Abraham RT, Wang XF. ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature 2001; 411:969–74. <https://doi.org/10.1038/35082110>
5. Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, Monroe BC, Ciccone DN, Yan C, Vlasakova K, Livingston DM, Ferguson DO, Scully R, Alt FW. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci 2002; 99:8173–8. <https://doi.org/10.1073/pnas.122228699> <PubMed>
6. Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan MB, Bartek J, Lukas J. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol 2006; 173:195–206. <https://doi.org/10.1083/jcb.200510130> <PubMed>
7. Boyd SD, Tsai KY, Jacks T. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nat Cell Biol 2000; 2:563–8. <https://doi.org/10.1038/35023500>
8. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 1998; 281:1677–9. <https://doi.org/10.1126/science.281.5383.1677>
9. Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A. Genomic instability in mice lacking histone H2AX. Science 2002; 296:922–7. <https://doi.org/10.1126/science.1069398> <PubMed>
10. Child ES, Mann DJ. The intricacies of p21 phosphorylation: protein/protein interactions, subcellular localization and stability. Cell Cycle 2006; 5:1313–9. <https://doi.org/10.4161/cc.5.12.2863>
11. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 1994; 265:346–55. <https://doi.org/10.1126/science.8023157>
12. Criswell T, Leskov K, Miyamoto S, Luo G, Boothman DA. Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene 2003; 22:5813–27. <https://doi.org/10.1038/sj.onc.1206680>
13. Digweed M, Sperling K. Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair (Amst) 2004; 3:1207–17. <https://doi.org/10.1016/j.dnarep.2004.03.004>
14. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J. The ATM-Chk2- Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001; 410:842–7. <https://doi.org/10.1038/35071124>
15. Falck J, Petrini JH, Williams BR, Lukas J, Bartek J. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat Genet 2002; 30:290–4. <https://doi.org/10.1038/ng845>
16. Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 2005; 434:605–11. <https://doi.org/10.1038/nature03442>
17. Ghosal G, Muniyappa K. The Characterization of Saccharomyces cerevisiae Mre11/Rad50/Xrs2 Complex Reveals that Rad50 Negatively Regulates Mre11 Endonucleolytic but not the Exonucleolytic Activity. J Mol Biol 2007; 372: 864–82. <https://doi.org/10.1016/j.jmb.2007.07.013>
18. Haber JE. Partners and pathways repairing a double-strand break. Trends Genet 2000; 16:259–64. <https://doi.org/10.1016/S0168-9525(00)02022-9>
19. Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science. 2000; 287:1824–7. <https://doi.org/10.1126/science.287.5459.1824>
20. Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 1997; 420:25–7. <https://doi.org/10.1016/S0014-5793(97)01480-4>
21. Jeggo PA. Identification of genes involved in repair of DNA double-strand breaks in mammalian cells. Radiat Res. 1998; 150:80–91. Review. <https://doi.org/10.2307/3579810>
22. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991; 51: 6304–11.
23. Khanna KK, Lavin MF, Jackson SP, Mulhern TD. Related Articles, Links ATM, a central controller of cellular responses to DNA damage. Cell Death Differ 2001; 8:1052–65. Review. <https://doi.org/10.1038/sj.cdd.4400874>
24. Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci USA 1999; 96:14973–7. <https://doi.org/10.1073/pnas.96.26.14973> <PubMed>
25. Kim JE, Minter-Dykhouse K, Chen J. Signaling networks controlled by the MRN complex and MDC1 during early DNA damage responses. Mol Carcinog 2006; 45:403–8. <https://doi.org/10.1002/mc.20221>
26. Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev 1996; 10:1054–72. <https://doi.org/10.1101/gad.10.9.1054>
27. Lavin MF, Shiloh Y. The genetic defect in ataxia-telangiectasia. Annu Rev Immunol 1997; 15:177–202. <https://doi.org/10.1146/annurev.immunol.15.1.177>
28. Lavin MF. The Mre11 complex and ATM: a two-way functional interaction in recognising and signaling DNA double strand breaks. DNA Repair (Amst) 2004; 3:1515–20. <https://doi.org/10.1016/j.dnarep.2004.07.001>
29. Lavin MF. ATM and the Mre11 complex cosine to recognize and signal DNA double-strand breaks. Oncogene 2007; 26:7749–58. <https://doi.org/10.1038/sj.onc.1210880>
30. Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 2005; 308:551–4. <https://doi.org/10.1126/science.1108297>
31. Lee JS, Collins KM, Brown AL, Lee CH, Chung JH. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 2000; 404:201–4. <https://doi.org/10.1038/35004614>
32. Lee S, Elenbaas B, Levine A, Griffith J. p53 and its 14 kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 1995; 81:1013–20. <https://doi.org/10.1016/S0092-8674(05)80006-6>
33. Löbrich M, Jeggo PA. The two edges of the ATM sword: co-operation between repair and checkpoint functions. Radiother Oncol 2005; 76:112–8. Review. <https://doi.org/10.1016/j.radonc.2005.06.027>
34. Lukas J, Lukas C, Bartek J. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst) 2004; 3: 997–1007. Review. <https://doi.org/10.1016/j.dnarep.2004.03.006>
35. Ma Y, Lu H, Schwarz K, Lieber MR. Repair of double-strand DNA breaks by the human nonhomologous DNA end joining pathway: the iterative processing model. Cell Cycle 2005; 4:1193–200. <https://doi.org/10.4161/cc.4.9.1977>
36. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ. Ataxia telangiectasia- mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 2000; 97:10389–94. <https://doi.org/10.1073/pnas.190030497> <PubMed>
37. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007; 316:1160–6. <https://doi.org/10.1126/science.1140321>
38. Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y, Kastan MB, Katzir E, Oren M. ATM-dependent phosphorylation of Mdm2 on serine 395: Role in p53 activation by DNA damage. Genes Dev 2001; 15:1067–77. <https://doi.org/10.1101/gad.886901> <PubMed>
39. Michael D, Oren M. The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 2003; 13:49–58. Review. <https://doi.org/10.1016/S1044-579X(02)00099-8>
40. Mirzoeva OK, Petrini JH. DNA replication-dependent nuclear dynamics of the Mre11 complex. Mol Cancer Res 2003; 1:207–18.
41. Mochan TA, Venere M, DiTullio RA Jr, Halazonetis TD. 53BP1, an activator of ATM in response to DNA damage. DNA Repair (Amst) 2004; 3:945–52. <https://doi.org/10.1016/j.dnarep.2004.03.017>
42. Pollard TD, Earnshaw WC. Cell biology. 1. vyd. Philadelphia: Sander, Elsevier Science, 2002: 688–9.
43. Reliene R, Bishop AJ, Schiestl RH. Involvement of homologous recombination in carcinogenesis. Adv Genet 2007; 58:67–87.
44. Riballo E, Critchlow SE, Teo SH, Doherty AJ, Priestley A, Broughton B, Kysela B, Beamish H, Plowman N, Arlett CF, Lehmann AR, Jackson SP, Jeggo PA. Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr Biol 1999; 9:699–702. <https://doi.org/10.1016/S0960-9822(99)80311-X>
45. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 1999; 146:905–16. <https://doi.org/10.1083/jcb.146.5.905> <PubMed>
46. Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ. Nucleo-cytoplazmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J 1998; 17:554–64. <https://doi.org/10.1093/emboj/17.2.554> <PubMed>
47. Sengupta S, Harris CC. p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 2005; 6:44–55. <https://doi.org/10.1038/nrm1546>
48. Schultz LB, Chehab NH, Malikzay A, Halazonetis TD. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol 2000; 151:1381–90. <https://doi.org/10.1083/jcb.151.7.1381> <PubMed>
49. Schwartz GK. CDK inhibitors: cell cycle arrest versus apoptosis. Cell Cycle 2002; 1:122–3. Review. <https://doi.org/10.4161/cc.1.2.112>
50. Stiff T, O’Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA. ATM and DNAPK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 2004; 64:2390–6. <https://doi.org/10.1158/0008-5472.CAN-03-3207>
51. Suzuki A, Tsutomi Y, Akahane K, Araki T, Miura M. Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 1998; 17:931–9. <https://doi.org/10.1038/sj.onc.1202021>
52. Suzuki A, Tsutomi Y, Miura M, Akahane K. Caspase 3 inactivation to suppress Fas-mediated apoptosis: identification of binding domain with p21 and ILP and inactivation machinery by p21. Oncogene 1999; 18:1239–44. <https://doi.org/10.1038/sj.onc.1202409>
53. Taniguchi T, Garcia-Higuera I, Xu B, Andreassen PR, Gregory RC, Kim ST, Lane WS, Kastan MB, D’Andrea AD. Convergence of the Fanconi anemia and ataxia telangiectasia signaling pathways. Cell 2002; 109:459–72. <https://doi.org/10.1016/S0092-8674(02)00747-X>
54. Taylor AM. Unrepaired DNA strand breaks in irradiated ataxia telangiectasia lymphocytes suggested from cytogenetic observations. Mutat Res. 1978; 50: 407–18. <https://doi.org/10.1016/0027-5107(78)90045-3>
55. Thacker J, Zdzienicka MZ. The mammalian XRCC genes: their roles in DNA repair and genetic stability. DNA Repair 2003; 2:655–72. <https://doi.org/10.1016/S1568-7864(03)00062-4>
56. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 2003; 22:5612–21. <https://doi.org/10.1093/emboj/cdg541> <PubMed>
57. Vannier JB, Depeiges A, White C, Gallego ME. Two roles for Rad50 in telomere maintenance. EMBO J 2006; 25:4577–85. <https://doi.org/10.1038/sj.emboj.7601345> <PubMed>
58. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408: 307–10. <https://doi.org/10.1038/35042675>
59. Wang P, Reed M, Wang Y, Mayr G, Stenger JE, Anderson ME, Schwedes JF, Tegtmeyer P. p53 domains: structure, oligomerization, and transformation. Mol Cell Biol 1994; 14:5182–91. <https://doi.org/10.1128/MCB.14.8.5182>
60. Ward IM, Minn K, van Deursen J, Chen J. p53 Binding protein 53BP1 required for DNA damage responses and tumor suppression in mice. Mol Cell Biol 2003; 23:2556–63. <https://doi.org/10.1128/MCB.23.7.2556-2563.2003> <PubMed>
61. Xu B, Kim ST and Kastan MB. Involvement of Brca1 in S-phase and G2-phase checkpoints after ionizing irradiation. Mol Cell Biol 2001; 21:3445–50. <https://doi.org/10.1128/MCB.21.10.3445-3450.2001> <PubMed>
62. Xu B, O’Donnell AM, Kim ST and Kastan MB. Phosphorylation of serine 1387 in Brca1 is specifically required for the Atm-mediated S-phase checkpoint after ionizing irradiation. Cancer Res 2002; 62:4588–91.
63. Yazdi PT, Wang Y, Zhao S, Patel N, Lee EY, Qin J. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev 2002; 16:571–82. <https://doi.org/10.1101/gad.970702> <PubMed>
64. Yuan ZM, Huang Y, Ishiko T, Nakada S, Utsugisawa T, Kharbanda S, Wang R, Sung P, Shinohara A, Weichselbaum R, Kufe D. Regulation of Rad51 function by c-Abl in response to DNA damage. J Biol Chem 1998; 273:3799–802. <https://doi.org/10.1074/jbc.273.7.3799>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive