Acta Med. 2009, 52: 135-139

https://doi.org/10.14712/18059694.2016.119

Occurrence and Significance of the Nuclear Transcription Factor Krüppel-Like Factor 4 (KLF4) in the Vessel Wall

Pavel Kuneša, Zdeňka Holubcováa, Jan Krejsekb

aCharles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Department of Cardiac Surgery, Hradec Králové, Czech Republic
bCharles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Institute of Clinical Immunology and Allergology, Hradec Králové, Czech Republic

Received August 28, 2009
Accepted December 8, 2009

References

1. Adam PJ, Regan CP, Hautmann MB, Owens GK. Positive- and negative-acting Krüppel-like transcription factors bind a transforming growth factor- control element required for expression of the smooth muscle cell differentiation marker SM22 in vivo. J Biol Chem 2000; 275:37798–806. <https://doi.org/10.1074/jbc.M006323200>
2. Berk BC. Atheroprotective signaling mechanisms activated by steady laminar flow in endothelial cells. Circulation 2008; 117:1082–9. <https://doi.org/10.1161/CIRCULATIONAHA.107.720730>
3. Bieker JJ. Krüppel-like factors: three fingers in many pies. J Biol Chem 2001; 276:34355–8. <https://doi.org/10.1074/jbc.R100043200>
4. Davis ME, Cai H, Drummond GR, Harrison DG. Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways. Circ Res 2001; 89:1073–80. <https://doi.org/10.1161/hh2301.100806>
5. Deaton RA, Gan Q, Owens GK. Sp1-dependent activation of KLF4 is required for PDGF-BB-induced phenotype modulation of smooth muscle. Am J Physiol 2009; 296:H1027–37.
6. Dekker RJ, van Soest S, Fontjin RD, et al. Prolonged fluid shear stress increases distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2). Blood 2002; 100:1689–98. <https://doi.org/10.1182/blood-2002-01-0046>
7. Dekker RJ, van Thienen JV, Rohlena J, et al. Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol 2005; 167:609–18. <https://doi.org/10.1016/S0002-9440(10)63002-7> <PubMed>
8. Funnell APW, Maloney CA, Thompson LJ, et al. Erythroid Krüppel-like factor directly activates the basic Krüppel-like factor gene in erythroid cells. Mol Cell Biol 2007; 27:2777–90. <https://doi.org/10.1128/MCB.01658-06> <PubMed>
9. Ghaleb AM, Nandan MO, Chanchevalap S, Dalton WB, Hisamuddin IM, Yang VW. Krüppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res 2005; 15:92–6. <https://doi.org/10.1038/sj.cr.7290271> <PubMed>
10. Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T, Cybulski MI. The NF-B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci USA 2000; 97:9052–7. <https://doi.org/10.1073/pnas.97.16.9052> <PubMed>
11. Hamik A, Lin Z, Kumar A, et al. Krüppel-like factor 4 regulates endothelial inflammation. J Biol Chem 2007; 282:13769–79. <https://doi.org/10.1074/jbc.M700078200>
12. Hwang S-J, Ballantyne CM, Sharrett AR, et al. Circulating adhesion moleules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases. The Atherosclerosis Risk In Communities (ARIC) Study. Circulation 1997; 96:4219–25. <https://doi.org/10.1161/01.CIR.96.12.4219>
13. Jongstra-Bilen J, Haidari M, Zhu S-N, Chen M, Guha D, Cybulski MI. Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J Exp Med 2006; 203:2073–83. <https://doi.org/10.1084/jem.20060245> <PubMed>
14. Kanai M, Wei D, Li R, et al. Loss of Krüppel-like factor 4 expression contributes to Sp1 overexpression and human gastric cancer development and progression. Clin Cancer Res 2006; 12:6395–402. <https://doi.org/10.1158/1078-0432.CCR-06-1034>
15. Kawai-Kowase K, Ohshima T, Matsui H, et al. PIAS1 mediates TGFβ-induced SM α-actin gene expression through inhibition of KLF4 function-expression by protein sumoylation. Arterioscler Thromb Vasc Biol 2009; 29:99–106. <https://doi.org/10.1161/ATVBAHA.108.172700> <PubMed>
16. Kumar A, Lin Z, SenBanerjee S, Jain MK. Tumor necrosis factor—mediated reduction of KLF2 is due to inhibition of MEF2 by NF-B and histone deacetylases. Mol Cell Biol 2005; 25:5893–903. <https://doi.org/10.1128/MCB.25.14.5893-5903.2005> <PubMed>
17. Liu Y, Sinha S, Owens S. A transforming growth factor- control element required for SM-actin expression in vivo also partially mediates GKLF-dependent transcriptional repression. J Biol Chem 2003; 278:48004–11. <https://doi.org/10.1074/jbc.M301902200>
18. Mantovani A, Bussolino F, Introna M. Cytokine regulation of endothelial cell function: from molecular level to the bedside. Immunol Today 1997; 18:231–5. <https://doi.org/10.1016/S0167-5699(97)81662-3>
19. Methe H, Balcells M, del Carmen Alegret M, et al. Vascular bed origin dictates flow pattern regulation of endothelial adhesion molecule expression. Am J Physiol 2007; 292:H2167–75.
20. Pandya AY, Talley LI, Frost AR, et al. Nuclear localization of KLF4 is associated with an aggressive phenotype in early-stage breast cancer. Clin Cancer Res 2004; 10:2709–19. <https://doi.org/10.1158/1078-0432.CCR-03-0484>
21. Rao RM, Yang L, Garcia-Cardena G, Luscinskas FW. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res 2007; 101: 234–47. <https://doi.org/10.1161/CIRCRESAHA.107.151860b>
22. Rowland BD, Bernards R, Peeper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 2005; 7:1074–82. <https://doi.org/10.1038/ncb1314>
23. Shi Y, Desponts C, Do JT, Hahm HS, Schöler HR, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and KLF4 with smallmolecular compounds. Cell Stem Cell 2008; 3:568–74. <https://doi.org/10.1016/j.stem.2008.10.004>
24. Shields JM, Christy RJ, Yana VW. Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest. J Biol Chem 1996; 271:20009–17. <https://doi.org/10.1074/jbc.271.33.20009> <PubMed>
25. Takada Y, Shinkai F, Kondo S, et al. Fluid shear stress increases the expression of thrombomodulin by cultured human endothelial cells. Biochem Biophys Res Commun 1994; 205:1345–52. <https://doi.org/10.1006/bbrc.1994.2813>
26. Tuomisto TT, Lumivuori H, Kansanen E, et al. Simvastatin has an antiinflammatory effect on macrophages via upregulation of an atheroprotective transcription factor, Krüppel-like factor 2. Cardiovasc Res 2008; 78:175–84. <https://doi.org/10.1093/cvr/cvn007>
27. van Thienen JV, Fledderus JO, Dekker RJ, et al. Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. Cardiovasc Res 2006; 72:231–40. <https://doi.org/10.1016/j.cardiores.2006.07.008>
28. Wang C, Han M, Zhao X-M, Wen J-K. Krüppel-like factor 4 is required for the expression of vascular smooth muscle cell differentiation marker genes induced by all-trans retinoic acid. J Biochem 2008; 144:313–21. <https://doi.org/10.1093/jb/mvn068>
29. Wani MA, Wert SE, Lingrel JB. Lung Krüppel-like factor, a zinc finger transcription factor, is essential for normal lung development. J Biol Chem 1999; 274:21180–5. <https://doi.org/10.1074/jbc.274.30.21180>
30. Wassmann S, Wassmann K, Jung A, et al. Induction of p53 by GKLF is essential for inhibition of proliferation of vascular smooth muscle cells. J Mol Cell Cardiol 2007; 43:301–7. <https://doi.org/10.1016/j.yjmcc.2007.06.001>
31. Wei D, Kanai M, Jia Z, Le X, Xie K. Krüppel-like factor 4 induces p27Kip1 expression in and suppresses the growth and metastasis of human pancreatic cancer cells. Cancer Res 2008; 68:4631–9. <https://doi.org/10.1158/0008-5472.CAN-07-5953> <PubMed>
32. Yamawaki H, Lehoux S, Berk B. Chronic physiological shear stress inhibits tumor necrosis factor-induced proinflammatory responses in rabbit aorta perfused ex vivo. Circulation 2003; 108:1619–25. <https://doi.org/10.1161/01.CIR.0000089373.49941.C4>
33. Yet S-F, McA’Nulty MM, Folta SC, Yen H-W, Yoshizumi M, Hsieh C-M, et al. Human EZF, a Krüppel-like zinc finger protein, is expressed in vascular endothelial cells and contains transcriptional activation and repression domains. J Biol Chem 1998; 273:1026–31. <https://doi.org/10.1074/jbc.273.2.1026>
34. Yoon HS, Chen X, Yang VW. Krüppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. J Biol Chem 2003; 278: 2101–5. <https://doi.org/10.1074/jbc.M211027200> <PubMed>
35. Yoon HS, Yang VW. Requirement of Krüppel-like factor 4 in preventing entry into mitosis following DNA damage. J Biol Chem 2004; 279:5035–41. <https://doi.org/10.1074/jbc.M307631200> <PubMed>
36. Yoshida T, Gan Q, Owens GL. Krüppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. Am J Physiol 2008; 295:C1175–82. <https://doi.org/10.1152/ajpcell.00288.2008> <PubMed>
37. Yoshida T, Kaestner KH, Owens GK. Conditional deletion of Krüppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ Res 2008; 102: 1548–57. <https://doi.org/10.1161/CIRCRESAHA.108.176974> <PubMed>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive