Acta Med. 2009, 52: 135-139
https://doi.org/10.14712/18059694.2016.119
Occurrence and Significance of the Nuclear Transcription Factor Krüppel-Like Factor 4 (KLF4) in the Vessel Wall
References
1. J Biol Chem 2000; 275:37798–806.
< PJ, Regan CP, Hautmann MB, Owens GK. Positive- and negative-acting Krüppel-like transcription factors bind a transforming growth factor- control element required for expression of the smooth muscle cell differentiation marker SM22 in vivo. https://doi.org/10.1074/jbc.M006323200>
2. Circulation 2008; 117:1082–9.
< BC. Atheroprotective signaling mechanisms activated by steady laminar flow in endothelial cells. https://doi.org/10.1161/CIRCULATIONAHA.107.720730>
3. J Biol Chem 2001; 276:34355–8.
< JJ. Krüppel-like factors: three fingers in many pies. https://doi.org/10.1074/jbc.R100043200>
4. Circ Res 2001; 89:1073–80.
< ME, Cai H, Drummond GR, Harrison DG. Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways. https://doi.org/10.1161/hh2301.100806>
5. Am J Physiol 2009; 296:H1027–37.
RA, Gan Q, Owens GK. Sp1-dependent activation of KLF4 is required for PDGF-BB-induced phenotype modulation of smooth muscle.
6. Blood 2002; 100:1689–98.
< RJ, van Soest S, Fontjin RD, et al. Prolonged fluid shear stress increases distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2). https://doi.org/10.1182/blood-2002-01-0046>
7. Am J Pathol 2005; 167:609–18.
< RJ, van Thienen JV, Rohlena J, et al. Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. https://doi.org/10.1016/S0002-9440(10)63002-7>
<PubMed>
8. Mol Cell Biol 2007; 27:2777–90.
< APW, Maloney CA, Thompson LJ, et al. Erythroid Krüppel-like factor directly activates the basic Krüppel-like factor gene in erythroid cells. https://doi.org/10.1128/MCB.01658-06>
<PubMed>
9. Cell Res 2005; 15:92–6.
< AM, Nandan MO, Chanchevalap S, Dalton WB, Hisamuddin IM, Yang VW. Krüppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. https://doi.org/10.1038/sj.cr.7290271>
<PubMed>
10. Proc Natl Acad Sci USA 2000; 97:9052–7.
< L, Evans AI, Chen M, Hyduk SJ, Collins T, Cybulski MI. The NF-B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. https://doi.org/10.1073/pnas.97.16.9052>
<PubMed>
11. J Biol Chem 2007; 282:13769–79.
< A, Lin Z, Kumar A, et al. Krüppel-like factor 4 regulates endothelial inflammation. https://doi.org/10.1074/jbc.M700078200>
12. Circulation 1997; 96:4219–25.
< S-J, Ballantyne CM, Sharrett AR, et al. Circulating adhesion moleules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases. The Atherosclerosis Risk In Communities (ARIC) Study. https://doi.org/10.1161/01.CIR.96.12.4219>
13. J Exp Med 2006; 203:2073–83.
< J, Haidari M, Zhu S-N, Chen M, Guha D, Cybulski MI. Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. https://doi.org/10.1084/jem.20060245>
<PubMed>
14. Clin Cancer Res 2006; 12:6395–402.
< M, Wei D, Li R, et al. Loss of Krüppel-like factor 4 expression contributes to Sp1 overexpression and human gastric cancer development and progression. https://doi.org/10.1158/1078-0432.CCR-06-1034>
15. Arterioscler Thromb Vasc Biol 2009; 29:99–106.
< K, Ohshima T, Matsui H, et al. PIAS1 mediates TGFβ-induced SM α-actin gene expression through inhibition of KLF4 function-expression by protein sumoylation. https://doi.org/10.1161/ATVBAHA.108.172700>
<PubMed>
16. Mol Cell Biol 2005; 25:5893–903.
< A, Lin Z, SenBanerjee S, Jain MK. Tumor necrosis factor—mediated reduction of KLF2 is due to inhibition of MEF2 by NF-B and histone deacetylases. https://doi.org/10.1128/MCB.25.14.5893-5903.2005>
<PubMed>
17. J Biol Chem 2003; 278:48004–11.
< Y, Sinha S, Owens S. A transforming growth factor- control element required for SM-actin expression in vivo also partially mediates GKLF-dependent transcriptional repression. https://doi.org/10.1074/jbc.M301902200>
18. Immunol Today 1997; 18:231–5.
< A, Bussolino F, Introna M. Cytokine regulation of endothelial cell function: from molecular level to the bedside. https://doi.org/10.1016/S0167-5699(97)81662-3>
19. Am J Physiol 2007; 292:H2167–75.
H, Balcells M, del Carmen Alegret M, et al. Vascular bed origin dictates flow pattern regulation of endothelial adhesion molecule expression.
20. Clin Cancer Res 2004; 10:2709–19.
< AY, Talley LI, Frost AR, et al. Nuclear localization of KLF4 is associated with an aggressive phenotype in early-stage breast cancer. https://doi.org/10.1158/1078-0432.CCR-03-0484>
21. Circ Res 2007; 101: 234–47.
< RM, Yang L, Garcia-Cardena G, Luscinskas FW. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. https://doi.org/10.1161/CIRCRESAHA.107.151860b>
22. Nat Cell Biol 2005; 7:1074–82.
< BD, Bernards R, Peeper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. https://doi.org/10.1038/ncb1314>
23. Cell Stem Cell 2008; 3:568–74.
< Y, Desponts C, Do JT, Hahm HS, Schöler HR, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and KLF4 with smallmolecular compounds. https://doi.org/10.1016/j.stem.2008.10.004>
24. J Biol Chem 1996; 271:20009–17.
< JM, Christy RJ, Yana VW. Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest. https://doi.org/10.1074/jbc.271.33.20009>
<PubMed>
25. Biochem Biophys Res Commun 1994; 205:1345–52.
< Y, Shinkai F, Kondo S, et al. Fluid shear stress increases the expression of thrombomodulin by cultured human endothelial cells. https://doi.org/10.1006/bbrc.1994.2813>
26. Cardiovasc Res 2008; 78:175–84.
< TT, Lumivuori H, Kansanen E, et al. Simvastatin has an antiinflammatory effect on macrophages via upregulation of an atheroprotective transcription factor, Krüppel-like factor 2. https://doi.org/10.1093/cvr/cvn007>
27. Cardiovasc Res 2006; 72:231–40.
< JV, Fledderus JO, Dekker RJ, et al. Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. https://doi.org/10.1016/j.cardiores.2006.07.008>
28. J Biochem 2008; 144:313–21.
< C, Han M, Zhao X-M, Wen J-K. Krüppel-like factor 4 is required for the expression of vascular smooth muscle cell differentiation marker genes induced by all-trans retinoic acid. https://doi.org/10.1093/jb/mvn068>
29. J Biol Chem 1999; 274:21180–5.
< MA, Wert SE, Lingrel JB. Lung Krüppel-like factor, a zinc finger transcription factor, is essential for normal lung development. https://doi.org/10.1074/jbc.274.30.21180>
30. J Mol Cell Cardiol 2007; 43:301–7.
< S, Wassmann K, Jung A, et al. Induction of p53 by GKLF is essential for inhibition of proliferation of vascular smooth muscle cells. https://doi.org/10.1016/j.yjmcc.2007.06.001>
31. Cancer Res 2008; 68:4631–9.
< D, Kanai M, Jia Z, Le X, Xie K. Krüppel-like factor 4 induces p27Kip1 expression in and suppresses the growth and metastasis of human pancreatic cancer cells. https://doi.org/10.1158/0008-5472.CAN-07-5953>
<PubMed>
32. Circulation 2003; 108:1619–25.
< H, Lehoux S, Berk B. Chronic physiological shear stress inhibits tumor necrosis factor-induced proinflammatory responses in rabbit aorta perfused ex vivo. https://doi.org/10.1161/01.CIR.0000089373.49941.C4>
33. J Biol Chem 1998; 273:1026–31.
< S-F, McA’Nulty MM, Folta SC, Yen H-W, Yoshizumi M, Hsieh C-M, et al. Human EZF, a Krüppel-like zinc finger protein, is expressed in vascular endothelial cells and contains transcriptional activation and repression domains. https://doi.org/10.1074/jbc.273.2.1026>
34. J Biol Chem 2003; 278: 2101–5.
< HS, Chen X, Yang VW. Krüppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. https://doi.org/10.1074/jbc.M211027200>
<PubMed>
35. J Biol Chem 2004; 279:5035–41.
< HS, Yang VW. Requirement of Krüppel-like factor 4 in preventing entry into mitosis following DNA damage. https://doi.org/10.1074/jbc.M307631200>
<PubMed>
36. Am J Physiol 2008; 295:C1175–82.
< T, Gan Q, Owens GL. Krüppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. https://doi.org/10.1152/ajpcell.00288.2008>
<PubMed>
37. Circ Res 2008; 102: 1548–57.
< T, Kaestner KH, Owens GK. Conditional deletion of Krüppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. https://doi.org/10.1161/CIRCRESAHA.108.176974>
<PubMed>