Acta Med. 2009, 52: 135-139
https://doi.org/10.14712/18059694.2016.119
Occurrence and Significance of the Nuclear Transcription Factor Krüppel-Like Factor 4 (KLF4) in the Vessel Wall
References
1. PJ, Regan CP, Hautmann MB, Owens GK. Positive- and negative-acting Krüppel-like transcription factors bind a transforming growth factor- control element required for expression of the smooth muscle cell differentiation marker SM22 in vivo. J Biol Chem 2000; 275:37798–806.
<https://doi.org/10.1074/jbc.M006323200>
2. BC. Atheroprotective signaling mechanisms activated by steady laminar flow in endothelial cells. Circulation 2008; 117:1082–9.
<https://doi.org/10.1161/CIRCULATIONAHA.107.720730>
3. JJ. Krüppel-like factors: three fingers in many pies. J Biol Chem 2001; 276:34355–8.
<https://doi.org/10.1074/jbc.R100043200>
4. ME, Cai H, Drummond GR, Harrison DG. Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways. Circ Res 2001; 89:1073–80.
<https://doi.org/10.1161/hh2301.100806>
5. RA, Gan Q, Owens GK. Sp1-dependent activation of KLF4 is required for PDGF-BB-induced phenotype modulation of smooth muscle. Am J Physiol 2009; 296:H1027–37.
6. RJ, van Soest S, Fontjin RD, et al. Prolonged fluid shear stress increases distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2). Blood 2002; 100:1689–98.
<https://doi.org/10.1182/blood-2002-01-0046>
7. RJ, van Thienen JV, Rohlena J, et al. Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol 2005; 167:609–18.
<https://doi.org/10.1016/S0002-9440(10)63002-7>
<PubMed>
8. APW, Maloney CA, Thompson LJ, et al. Erythroid Krüppel-like factor directly activates the basic Krüppel-like factor gene in erythroid cells. Mol Cell Biol 2007; 27:2777–90.
<https://doi.org/10.1128/MCB.01658-06>
<PubMed>
9. AM, Nandan MO, Chanchevalap S, Dalton WB, Hisamuddin IM, Yang VW. Krüppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res 2005; 15:92–6.
<https://doi.org/10.1038/sj.cr.7290271>
<PubMed>
10. L, Evans AI, Chen M, Hyduk SJ, Collins T, Cybulski MI. The NF-B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci USA 2000; 97:9052–7.
<https://doi.org/10.1073/pnas.97.16.9052>
<PubMed>
11. A, Lin Z, Kumar A, et al. Krüppel-like factor 4 regulates endothelial inflammation. J Biol Chem 2007; 282:13769–79.
<https://doi.org/10.1074/jbc.M700078200>
12. S-J, Ballantyne CM, Sharrett AR, et al. Circulating adhesion moleules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases. The Atherosclerosis Risk In Communities (ARIC) Study. Circulation 1997; 96:4219–25.
<https://doi.org/10.1161/01.CIR.96.12.4219>
13. J, Haidari M, Zhu S-N, Chen M, Guha D, Cybulski MI. Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J Exp Med 2006; 203:2073–83.
<https://doi.org/10.1084/jem.20060245>
<PubMed>
14. M, Wei D, Li R, et al. Loss of Krüppel-like factor 4 expression contributes to Sp1 overexpression and human gastric cancer development and progression. Clin Cancer Res 2006; 12:6395–402.
<https://doi.org/10.1158/1078-0432.CCR-06-1034>
15. K, Ohshima T, Matsui H, et al. PIAS1 mediates TGFβ-induced SM α-actin gene expression through inhibition of KLF4 function-expression by protein sumoylation. Arterioscler Thromb Vasc Biol 2009; 29:99–106.
<https://doi.org/10.1161/ATVBAHA.108.172700>
<PubMed>
16. A, Lin Z, SenBanerjee S, Jain MK. Tumor necrosis factor—mediated reduction of KLF2 is due to inhibition of MEF2 by NF-B and histone deacetylases. Mol Cell Biol 2005; 25:5893–903.
<https://doi.org/10.1128/MCB.25.14.5893-5903.2005>
<PubMed>
17. Y, Sinha S, Owens S. A transforming growth factor- control element required for SM-actin expression in vivo also partially mediates GKLF-dependent transcriptional repression. J Biol Chem 2003; 278:48004–11.
<https://doi.org/10.1074/jbc.M301902200>
18. A, Bussolino F, Introna M. Cytokine regulation of endothelial cell function: from molecular level to the bedside. Immunol Today 1997; 18:231–5.
<https://doi.org/10.1016/S0167-5699(97)81662-3>
19. H, Balcells M, del Carmen Alegret M, et al. Vascular bed origin dictates flow pattern regulation of endothelial adhesion molecule expression. Am J Physiol 2007; 292:H2167–75.
20. AY, Talley LI, Frost AR, et al. Nuclear localization of KLF4 is associated with an aggressive phenotype in early-stage breast cancer. Clin Cancer Res 2004; 10:2709–19.
<https://doi.org/10.1158/1078-0432.CCR-03-0484>
21. RM, Yang L, Garcia-Cardena G, Luscinskas FW. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res 2007; 101: 234–47.
<https://doi.org/10.1161/CIRCRESAHA.107.151860b>
22. BD, Bernards R, Peeper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 2005; 7:1074–82.
<https://doi.org/10.1038/ncb1314>
23. Y, Desponts C, Do JT, Hahm HS, Schöler HR, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and KLF4 with smallmolecular compounds. Cell Stem Cell 2008; 3:568–74.
<https://doi.org/10.1016/j.stem.2008.10.004>
24. JM, Christy RJ, Yana VW. Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest. J Biol Chem 1996; 271:20009–17.
<https://doi.org/10.1074/jbc.271.33.20009>
<PubMed>
25. Y, Shinkai F, Kondo S, et al. Fluid shear stress increases the expression of thrombomodulin by cultured human endothelial cells. Biochem Biophys Res Commun 1994; 205:1345–52.
<https://doi.org/10.1006/bbrc.1994.2813>
26. TT, Lumivuori H, Kansanen E, et al. Simvastatin has an antiinflammatory effect on macrophages via upregulation of an atheroprotective transcription factor, Krüppel-like factor 2. Cardiovasc Res 2008; 78:175–84.
<https://doi.org/10.1093/cvr/cvn007>
27. JV, Fledderus JO, Dekker RJ, et al. Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. Cardiovasc Res 2006; 72:231–40.
<https://doi.org/10.1016/j.cardiores.2006.07.008>
28. C, Han M, Zhao X-M, Wen J-K. Krüppel-like factor 4 is required for the expression of vascular smooth muscle cell differentiation marker genes induced by all-trans retinoic acid. J Biochem 2008; 144:313–21.
<https://doi.org/10.1093/jb/mvn068>
29. MA, Wert SE, Lingrel JB. Lung Krüppel-like factor, a zinc finger transcription factor, is essential for normal lung development. J Biol Chem 1999; 274:21180–5.
<https://doi.org/10.1074/jbc.274.30.21180>
30. S, Wassmann K, Jung A, et al. Induction of p53 by GKLF is essential for inhibition of proliferation of vascular smooth muscle cells. J Mol Cell Cardiol 2007; 43:301–7.
<https://doi.org/10.1016/j.yjmcc.2007.06.001>
31. D, Kanai M, Jia Z, Le X, Xie K. Krüppel-like factor 4 induces p27Kip1 expression in and suppresses the growth and metastasis of human pancreatic cancer cells. Cancer Res 2008; 68:4631–9.
<https://doi.org/10.1158/0008-5472.CAN-07-5953>
<PubMed>
32. H, Lehoux S, Berk B. Chronic physiological shear stress inhibits tumor necrosis factor-induced proinflammatory responses in rabbit aorta perfused ex vivo. Circulation 2003; 108:1619–25.
<https://doi.org/10.1161/01.CIR.0000089373.49941.C4>
33. S-F, McA’Nulty MM, Folta SC, Yen H-W, Yoshizumi M, Hsieh C-M, et al. Human EZF, a Krüppel-like zinc finger protein, is expressed in vascular endothelial cells and contains transcriptional activation and repression domains. J Biol Chem 1998; 273:1026–31.
<https://doi.org/10.1074/jbc.273.2.1026>
34. HS, Chen X, Yang VW. Krüppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. J Biol Chem 2003; 278: 2101–5.
<https://doi.org/10.1074/jbc.M211027200>
<PubMed>
35. HS, Yang VW. Requirement of Krüppel-like factor 4 in preventing entry into mitosis following DNA damage. J Biol Chem 2004; 279:5035–41.
<https://doi.org/10.1074/jbc.M307631200>
<PubMed>
36. T, Gan Q, Owens GL. Krüppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. Am J Physiol 2008; 295:C1175–82.
<https://doi.org/10.1152/ajpcell.00288.2008>
<PubMed>
37. T, Kaestner KH, Owens GK. Conditional deletion of Krüppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ Res 2008; 102: 1548–57.
<https://doi.org/10.1161/CIRCRESAHA.108.176974>
<PubMed>


