Acta Med. 2009, 52: 101-106

https://doi.org/10.14712/18059694.2016.113

The Effect of Interferon-γ and Lipopolysaccharide on the Growth of Francisella tularensis LVS in Murine Macrophage-like Cell Line J774

Monika Holická, Jakub Novosad, Martina Loudová, Manuela Kudlová, Jan Krejsek

Charles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Department of Clinical Immunology and Allergology, Hradec Králové, Czech Republic

Received July 31, 2009
Accepted September 25, 2009

References

1. Anthony LS, Ghadirian E, Nestel FP, Kongshavn PA. The requirement for gamma interferon of mice to experimental tularemia. Microbial Pathog 1989; 7:421–8. <https://doi.org/10.1016/0882-4010(89)90022-3>
2. Barker JH, Weiss J, Apicella M, Nauseef WM. Basis for the failure of Francisella tularensis lipopolysaccharide to prime human polymorphonuclear leukocytes. Infect Immunity 2006; 74:3277–84. <https://doi.org/10.1128/IAI.02011-05> <PubMed>
3. Bosio CM, Elkins KL. Susceptibility to secondary Francisella tularensis live vaccine strain infection in B-cell-deficient mice is associated with neutrophilia but not with defects in specific T-cell-mediated immunity. Infect Immun 2001; 69:194–203. <https://doi.org/10.1128/IAI.69.1.194-203.2001> <PubMed>
4. Carlson Jr PE, Carrol JA, O’Dee DM, Nau GJ. Modulation of virulence factors in Francisella tularensis determines human macrophage response. Microbial Pathogen 2007; 42:204–14. <https://doi.org/10.1016/j.micpath.2007.02.001> <PubMed>
5. Chen W, KuoLee R, Shen H, Busa M, Conlan JW. Toll-like receptor 4 (TLR4) plays a relatively minor role in murine defense against primary intradermal infection with Francisella tularensis LVS. Immunol Lett 2005; 97:151–4. <https://doi.org/10.1016/j.imlet.2004.10.001>
6. Cowley SC, Myltseva SV, Nano FE. Phase variation in Francisella tularensis affecting intracellular growth, lipopolysaccharide antigenicity and nitric oxide production. Mol Microbiol 1996; 20:867–74. <https://doi.org/10.1111/j.1365-2958.1996.tb02524.x>
7. Duenas AI, Aceves M, Orduna A, Diaz R, Sanchez Crespo M, Garcia-Rodriguez C. Francisella tularensis LPS induces the production of cytokines in human monocytes and signals via Toll-like receptor 4 with much lower potency than E. coli LPS. Int Immunol 2006; 18(5):785–95. <https://doi.org/10.1093/intimm/dxl015>
8. Fortier AH, Polsinelli T, Green SJ, Nacy CA. Activation of macrophages for destruction of Francisella tularensis: Identification of cytokines, effector cells, and effector molecules. Infect Immun 1992; 60:817–25.
9. Golovliov I, Baranov V, Krocova Z, Kovarova H, Sjöstedt A. An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect Immun 2003; 71(10):5940–50. <https://doi.org/10.1128/IAI.71.10.5940-5950.2003> <PubMed>
10. Golovliov I, Sandström G, Ericsson M, Sjöstedt A, Tärnvik A. Cytokine expression in the liver during the early phase of murine tularemia. Infect Immun 1995; 63:534–8.
11. Hrstka R, Stulik J, Vojtesek B. The role of MAPK signalling pathway during Francisella tularensis LVS infection-induced apoptosis in murine macrophages. Microbes Infect 2005; 7(4):619–25. <https://doi.org/10.1016/j.micinf.2004.12.020>
12. Kieffer TL, Cowley S, Nano FE, Elkins KL. Francisella novicida LPS has immunobiological activity in mice than F. tularensis LPS, and contributes to F. novicida murine pathogenesis. Microbes Infect 2003; 5(5):397–403. <https://doi.org/10.1016/S1286-4579(03)00052-2>
13. Lai XH, Golovliov I, Sjöstedt A. Francisellla tularensis induced cytopathogenicity and apoptosis in murine macrophages via a mechanism that requires intracellular bacterial multiplication. Infect Immun 2001; 69:4691–4. <https://doi.org/10.1128/IAI.69.7.4691-4694.2001> <PubMed>
14. Li H, Nookala S, Bina XR, Bina JE, Re F. Innate immune response to Francisella tularensis is mediated by TLR2 and caspase-1 activation. J Leukoc Biol 2006; 80: 766–73. <https://doi.org/10.1189/jlb.0406294>
15. Murray HW. Gamma interferon, cytokine-induced macrophage activation, and antimicrobial host defence. Diag Microbiol Infect Dis 1990; 13:411–21. <https://doi.org/10.1016/0732-8893(90)90012-K>
16. Santic M, Molmeret M, Klose KE, Kwaik YA. Francisella tularensis travels, a novel, twisted road within macrophages. Trends Microbiol 2006; 14:37–44. <https://doi.org/10.1016/j.tim.2005.11.008>
17. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-γ: an overview of signals, mechanisms and functions. J Leuk Biol 2004; 75:163–89. <https://doi.org/10.1189/jlb.0603252>
18. Telepnev M, Golovliov I, Grundström T, Tärnvik A, Sjöstedt A. Francisella tularensis inhibits Toll-like receptor-mediated activation of intracellular signalling and secretion of TNF-α and IL-1 from murine macrophages. Cell Microbiol 2003; 5(1):41–51. <https://doi.org/10.1046/j.1462-5822.2003.00251.x>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive