Acta Med. 2009, 52: 69-72

https://doi.org/10.14712/18059694.2016.107

Tissue Specific Sensitivity of Mitochondrial Permeability Transition Pore to Ca2+ Ions

René Endlichera, Pavla Křivákováa, Halka Lotkováa, Marie Milerováb, Zdeněk Drahotaa,b, Zuzana Červinkováa

aCharles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Department of Physiology, Hradec Králové, Czech Republic
bAcademy of Sciences of the Czech Republic, Institute of Physiology, Prague, Czech Republic

Received February 1, 2009
Accepted June 1, 2009

Crossref Cited-by Linking

  • Muratova Dilnoza Kh., Ergashev Nurali A., Asrarov Muzaffar I.: Effect of Talatisamine and its Derivate 14-O-Benzoyltalatisamine on Functional State of Rat Liver and Heart Mitochondria. Biomed. Pharmacol. J. 2023, 16, 2333. <https://doi.org/10.13005/bpj/2808>
  • Endlicher René, Drahota Zdeněk, Štefková Kateřina, Červinková Zuzana, Kučera Otto: The Mitochondrial Permeability Transition Pore—Current Knowledge of Its Structure, Function, and Regulation, and Optimized Methods for Evaluating Its Functional State. Cells 2023, 12, 1273. <https://doi.org/10.3390/cells12091273>
  • Shi Xiaojing, Li Yang, Wang Yaguang, Ding Tiejia, Zhang Xiaowen, Wu Nan: Pharmacological postconditioning with sappanone A ameliorates myocardial ischemia reperfusion injury and mitochondrial dysfunction via AMPK-mediated mitochondrial quality control. Toxicology and Applied Pharmacology 2021, 427, 115668. <https://doi.org/10.1016/j.taap.2021.115668>
  • Dubinin Mikhail V., Talanov Eugeny Yu., Tenkov Kirill S., Starinets Vlada S., Mikheeva Irina B., Sharapov Mars G., Belosludtsev Konstantin N.: Duchenne muscular dystrophy is associated with the inhibition of calcium uniport in mitochondria and an increased sensitivity of the organelles to the calcium-induced permeability transition. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2020, 1866, 165674. <https://doi.org/10.1016/j.bbadis.2020.165674>
  • Oyebode Olubukola T., Giwa Olawumi D., Olorunsogo Olufunso O.: Comparative effects of galactose-induced aging on mitochondrial permeability transition in rat liver and testis. Toxicology Mechanisms and Methods 2020, 30, 388. <https://doi.org/10.1080/15376516.2020.1755921>
  • DRAHOTA Z, ENDLICHER R, KUČERA O, RYCHTRMOC D, ČERVINKOVÁ Z: Factors Affecting the Function of the Mitochondrial Membrane Permeability Transition Pore and Their Role in Evaluation of Calcium Retention Capacity Values. Physiol Res 2020, 491. <https://doi.org/10.33549/physiolres.934391>
  • Dubinin Mikhail V., Talanov Eugeny Yu., Tenkov Kirill S., Starinets Vlada S., Belosludtseva Natalia V., Belosludtsev Konstantin N.: The Effect of Deflazacort Treatment on the Functioning of Skeletal Muscle Mitochondria in Duchenne Muscular Dystrophy. IJMS 2020, 21, 8763. <https://doi.org/10.3390/ijms21228763>
  • Briston Thomas, Selwood David L., Szabadkai Gyorgy, Duchen Michael R.: Mitochondrial Permeability Transition: A Molecular Lesion with Multiple Drug Targets. Trends in Pharmacological Sciences 2019, 40, 50. <https://doi.org/10.1016/j.tips.2018.11.004>
  • Miao Jiaxin, Huang Zijun, Liu Shuang, Li Xuying, Jia Pengyu, Guo Yuxuan, Wu Nan, Jia Dalin: Hydroxytyrosol protects against myocardial ischemia reperfusion injury by inhibiting mitochondrial permeability transition pore opening. Exp Ther Med 2018. <https://doi.org/10.3892/etm.2018.7016>
  • Laker Rhianna C., Taddeo Evan P., Akhtar Yasir N., Zhang Mei, Hoehn Kyle L., Yan Zhen, Zazueta Cecilia: The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis. PLoS ONE 2016, 11, e0167910. <https://doi.org/10.1371/journal.pone.0167910>
  • Taddeo E.P., Laker R.C., Breen D.S., Akhtar Y.N., Kenwood B.M., Liao J.A., Zhang M., Fazakerley D.J., Tomsig J.L., Harris T.E., Keller S.R., Chow J.D., Lynch K.R., Chokki M., Molkentin J.D., Turner N., James D.E., Yan Z., Hoehn K.L.: Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle. Molecular Metabolism 2014, 3, 124. <https://doi.org/10.1016/j.molmet.2013.11.003>
  • Court Felipe A., Coleman Michael P.: Mitochondria as a central sensor for axonal degenerative stimuli. Trends in Neurosciences 2012, 35, 364. <https://doi.org/10.1016/j.tins.2012.04.001>
  • DRAHOTA Z., MILEROVÁ M., ENDLICHER R., RYCHTRMOC D., ČERVINKOVÁ Z., OŠŤÁDAL B.: Developmental Changes of the Sensitivity of Cardiac and Liver Mitochondrial Permeability Transition Pore to Calcium Load and Oxidative Stress. Physiol Res 2012, S165. <https://doi.org/10.33549/physiolres.932377>
  • Zazueta Cecilia, García Noemí, Martínez-Abundis Eduardo, Pavón Natalia, Hernández-Esquivel Luz, Chávez Edmundo: Reduced capacity of Ca2+ retention in liver as compared to kidney mitochondria. ADP requirement. J Bioenerg Biomembr 2010, 42, 381. <https://doi.org/10.1007/s10863-010-9300-0>
Crossref Cited-by Linking logo