Acta Med. 2008, 51: 215-221
https://doi.org/10.14712/18059694.2017.27
    A Comparison of the Neuroprotective Efficacy of Newly Developed Oximes (K156, K203) and Currently Available Oximes (Obidoxime, HI-6) in Cyclosarin-poisoned Rats
References
1.  J. Organophosphate/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv Clin Chem 2004; 38:151–216.
            <https://doi.org/10.1016/S0065-2423(04)38006-6>
        
        
    
        2.  G, Karlsson L, Waara L, Wee Ang K, Goransson-Nyberg A. Pharmacokinetics and effects of HI-6 in blood and brain of soman-intoxicated rats: a microdialysis study. Eur J Pharmacol 1997; 332:43–52.
            <https://doi.org/10.1016/S0014-2999(97)01058-3>
        
        
    
        3.  E, Hornychová M. Clustering of neurobehavioral measures of toxicity. Homeostasis 1995; 36:19–25.
            
        
        
    
        4.  M, Frantík E, Kubát J, Formánek J. Neurotoxicity profile of supermethrin, a new pyrethroid insecticide. Cent Eur J Publ Health 1995; 3:210– 8.
            
        
        
    
        5.  J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. J Toxicol Clin Toxicol 2002; 40:803–16.
            <https://doi.org/10.1081/CLT-120015840>
        
        
    
        6.  J, Cabal J. A comparison of the efficacy of acetylcholinesterase reactivators against cyclohexyl methylphosphonofluoridate (GF agent) by in vitro and in vivo methods. Pharmacol Toxicol 1999; 84:41–5.
            <https://doi.org/10.1111/j.1600-0773.1999.tb02109.x>
        
        
    
        7.  J, Karasová J, Musílek K, Kuča K. An evaluation of therapeutic and reactivating effects of newly developed oximes (K156, K203) and commonly used oximes (obidoxime, trimedoxime, HI-6) in tabun-poisoned rats and mice. Toxicology 2008; 243:311–6.
            <https://doi.org/10.1016/j.tox.2007.10.015>
        
        
    
        8.  K, Cabal J, Jun D, Bajgar J, Hrabinová M. Potency of new structurally different oximes to reactivate cyclosarin-inhibited human brain acetylcholinesterase. J Enz Inhib Med Chem 2006; 21:663–6.
            <https://doi.org/10.1080/14756360600850916>
        
        
    
        9.  K, Cabal J, Jun D, et al. In vitro reactivation potency of some acetylcholinesterase reactivators against sarin- and cyclosarin-induced inhibitions. J Appl Toxicol 2005; 25:296–300.
            <https://doi.org/10.1002/jat.1065>
        
        
    
        10.  K, Jun D, Musílek K. Structural requirements of acetylcholinesterase reactivators. Mini-Rev Med Chem 2006; 6:109–20.
            <https://doi.org/10.2174/138955706776073510>
        
        
    
        11.  K, Musílek K, Paar M, et al. Targeted synthesis of 1-(4-hydroxyiminomethylpyridinium)- 3-pyridinium propane dibromide – a new nerve agent reactivator. Molecules 2007; 12:1964–72.
            <https://doi.org/10.3390/12081964>
        <PubMed>
        
    
        12.  J, Patočka J. Reactivation of cyclosarin-inhibited rat brain acetylcholinesterase by pyridinium-oximes. J Enz Inhib Med Chem 2004; 19:39–43.
            <https://doi.org/10.1080/1475636031000163850>
        
        
    
        13. Lotti M. Organophosphorus compounds. In: Spencer PS, Schaumburg HH (eds). Experimental and Clinical Neurotoxicology. New York: Oxford University Press 2000:898–925.
            
        
        
    
        14.  PM, Raved L, Amitai G. Development of the bisquaternary oxime HI-6 toward clinical use in the treatment of organophosphate nerve agent poisoning. Toxicol Rev 2006; 25:231–43.
            <https://doi.org/10.2165/00139709-200625040-00004>
        
        
    
        15.  TC. Organophosphate poisoning. Pharmacol Ther 1993; 58:51–66.
            <https://doi.org/10.1016/0163-7258(93)90066-M>
        
        
    
        16.  TC, Rice P, Vale JA. The role of oximes in the treatment of nerve agent poisoning in civilian casualties. Toxicol Rev 2006; 25:297–323.
            <https://doi.org/10.2165/00139709-200625040-00009>
        
        
    
        17.  JH Jr, Shih T-M Neuropharmacological modulation of nerve agent-induced seizure and neuropathology. Neurosci Biobehav Rev 1997; 21: 559–79.
            <https://doi.org/10.1016/S0149-7634(96)00050-4>
        
        
    
        18.  VC, Tilson H, McPhail RC, et al. The IPCS collaborative study on neurobehavioral screening methods: II. Protocol design and testing procedures. Neurotoxicology 1997; 18:929–38.
            
        
        
    
        19.  K, Holas O, Kuča K, et al. Synthesis of monooxime-monocarbamoyl bispyridinium compounds bearing (E)-but-2-ene linker and evaluation of their reactivation activity against tabun- and paraoxon-inhibited acetylcholinesterase. J. Enz. Inhib. Med. Chem. 2008; 23:70–6.
            <https://doi.org/10.1080/14756360701383981>
        
        
    
        20.  K, Kuča K, Jun D, Doležal M. Progress in synthesis of new acetylcholinesterase reactivators during the period 1990–2004. Curr Org Chem 2007; 11:229–38.
            <https://doi.org/10.2174/138527207779316417>
        
        
    
        21.  K, Matsubara K, Shimizu K, et al. Pralidoxime iodide (2-PAM) penetrates across the blood-brain barrier. Neurochem Res 2003; 28:1401–7.
            <https://doi.org/10.1023/A:1024960819430>
        
        
    
        22. Taylor P. Anticholinesterase agents. In: Hardman JG, Limbird LE (eds). The Pharmacological Basis of Therapeutics. New York: McGraw Hill 1996:161–76.
            
        
        
    
        23.  SW, Hoffman RS. Nerve agents: a comprehensive review. J Intensive Care Med 2004; 19:22–37.
            <https://doi.org/10.1177/0885066603258659>
        
        
    
        24.  F, Eyer P, Szinicz L. Inhibition, reactivation and aging kinetics of cyclohexylphosphonofluoridate- inhibited human cholinesterases. Arch Toxicol 1998; 72:580–7.
            <https://doi.org/10.1007/s002040050546>
        
        
    

                
                
