Acta Med. 2008, 51: 151-156

https://doi.org/10.14712/18059694.2017.17

Early Enamel Lesion: Part II. – Histo-morphology and Prevention

Marina George Kudiyirickal, Romana Ivančaková

Charles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Department of Dentistry, Hradec Králové, Czech Republic

Received June 1, 2008
Accepted September 1, 2008

References

1. Aasenden R, Depaola PF, Brudevold F. Effects Of Daily Rinsing And Ingestion Of Fluoride Upon Dental Caries And Enamel Fluoride. Arch Oral Biol 1972; 17:1705–1714. <https://doi.org/10.1016/0003-9969(72)90233-6>
2. Anttonen V, Seppä L, Hausen H. Clinical study of the use of the laser fluorescence device DIAGNOdent for detection of occlusal caries in children. Caries Res 2003; 37(1):17–23. <https://doi.org/10.1159/000068227>
3. Applebaum E. The Radiopaque Surface Layer of Enamel and Caries. J Dent Res 1940; 19:41–46. <https://doi.org/10.1177/00220345400190010501>
4. Arends’ J, Christoffersen J. Invited Review Article The Nature of Early Caries Lesions in Enamel. J Dent Res 1986; 65(1):2–11. <https://doi.org/10.1177/00220345860650010201>
5. Arends J, Christoffersen J, Christoffersen MR, Schuthof J. Influence Of Fluoride Concentration On The Progress Of Demineralization In Bovine Enamel At Ph 4.5. Caries Res 1983; 17:455–457. <https://doi.org/10.1159/000260700>
6. Arends J, Jongebloed WL, Schuthof J. The Ultrastructure of Surface Enamel in Relation to De- and Remineralization. In: Demineralization and Remineralization of the Teeth, S.A. Leach and W.M. Edgar, Eds., Oxford: IRL Press, 1983;155–164.
7. Arends J, Ogaard B, Ekstrand J, Rolla G. Experimental Caries In Man; A Microradiographic Investigation (Abstract). IADR 1984; 62: 761.
8. Arends J, Schuthof J. Microhardness and LesionDepth Studies of Artificial Carious Lesions: A Comparison of Gelatin and HEC Based Systems. J Biol Buccale 1980; 8:175–181.
9. Arends J, Schuthof J, Jongebloed WL. Lesion Depth And Microhardness Indentations On Artificial White Spot Lesions. Caries Res 1980; 14:190–195. <https://doi.org/10.1159/000260453>
10. Ashley P. Diagnosis of occlusal caries in primary teeth. International Journal of Paediatric Dentistry 10; 2:166–171. <https://doi.org/10.1046/j.1365-263x.2000.00189.x>
11. Ashley PF, Blinkhorn AS, Davies RM. Occlusal caries diagnosis: an in vitro histological validation of the Electronic Caries Monitor (ECM) and other methods. Journal of Dentistry 26; 2:83–88. <https://doi.org/10.1016/S0300-5712(97)00007-9>
12. Besic FC. Caries like Enamel Changes by Chemical Means. J Dent Res 1953; 32:830–839. <https://doi.org/10.1177/00220345530320061101>
13. Bjarnason S. Temporary tooth separation in the treatment of approximal carious lesions. Quintessence Int 1996; 27:249–251.
14. Borsboom PCF, Van Der Mei HC, Arends J. Enamel Lesion Formation With And Without 0.12 Ppm F In Solution. Caries Res 1985; 19:396–403. <https://doi.org/10.1159/000260873>
15. Brudevold F, Mccann H, Gron P. Dental Caries In Caries Resistant Teeth as Related to the Chemistry of Enamel, G.E.W. Wolstenholm, Ed., London: Churchill, 1965;121–141.
16. Buskes JAKM, Christoffersen J, Arends J. Lesion Formation And Lesion Remineralization In Enamel Under Constant Composition Conditions. Caries Res 1985; 19:490–496. <https://doi.org/10.1159/000260887>
17. Christoffersen J. The Kinetics Of Dissolution Of Calcium Hydroxyapatite. A Contribution To The Understanding Of Biological Demineralization (Dissertation). Copenhagen, Denmark: University Of Copenhagen, 1984.
18. Christoffersen J, Arends J: Progress Of Artificial Carious Lesions In Enamel. Caries Res 1982; 16:433–439. <https://doi.org/10.1159/000260633>
19. Christoffersen J, Christoffersen MR: Kinetics Of Dissolution Of Calcium Hydroxyapatite. Ii. Dissolution 1979; 65:I9.
20. Clarkson BH, Wefel JS, Silverstone LM. Redistribution of Enamel Fluoride During White Spot Lesion Formation: An In Vitro Study on Human Dental Enamel. Caries Res 1981; 15:158–165. <https://doi.org/10.1159/000260513>
21. Coolidge TB, Besic FC, Jacobs MH. A Microscopic Comparison of Clinically and Artificially Produced Changes in Enamel. J Oral Surg 1955; 8:1204–1210. <https://doi.org/10.1016/0030-4220(55)90384-4>
22. Côrtes DF, Ekstrand KR, Elias-Boneta AR, Ellwood RP. An in vitro comparison of the ability of fibre-optic transillumination, visual inspection and radiographs to detect occlusal caries and evaluate lesion depth. Caries Res. 2000; 34(6):443–7. <https://doi.org/10.1159/000016621>
23. Darling AI. Studies Of The Early Lesion Of Enamel Caries With Transmitted Light, Polarized Light And Radiography. Br Dent J 1956; 101:289–297, 329–341.
24. Deery C, Toumba. Diagnosis and prevention of dental caries. In: Welbury R, Duggal MS, Hosey MT 3rd eds. Paediatric Dentistry. Oxford Univ Press 2005:109.
25. Donly KJ, Segura A, Wefel JS, Hogan MM. Evaluating the effects of fluoride-releasing dental materials on adjacent interproximal caries. J Am Dent Assoc 1999; 130:817–825. <https://doi.org/10.14219/jada.archive.1999.0305>
26. Ekstrand KR, Martignon S. Managing approximal carious lesions: a non-operative approach. Caries Res 2004; 38:361 (Abstr 12).
27. Englander HR, Keyes PH, Gestwicki M, Sultz HA. Clinical Anti-Caries Effect Of Repeated Topical Sodium Fluoride Applications By Mouthrinses. J Am Dent Assoc 1967; 75:638–644. <https://doi.org/10.14219/jada.archive.1967.0266>
28. Ericson D, Kidd E, McComb D, Mjör I, Noack MJ. Minimally invasive dentistry— concepts and techniques in cariology. Oral Health Prev Dent 2003; 1:59–72.
29. Featherstone JD. Clinical aspects of de/remineralization of teeth. Adv Dent Res 1995; 9:1–340.
30. Featherstone JD (1983). Diffusion phenomena and enamel caries development. In: Cariology today. Int. Congr., 1984. Zürich: Karger.
31. Featherstone JDB: Diffusion Phenomena During Artificial Carious Lesion Formation. J Dent Res 1977; 56(D):48–52. <https://doi.org/10.1177/002203457705600409011>
32. Featherstone JDB. Prevention and reversal of dental caries: role of low level fluoride. Community Dent Oral Epidemiol 1999; 27:31–40. <https://doi.org/10.1111/j.1600-0528.1999.tb01989.x>
33. Featherstone JDB. The Continuum of Dental Caries—Evidence for a Dynamic Disease Process. J Dent Res 83 (Spec Iss C) 2004; C39–C42. <https://doi.org/10.1177/154405910408301s08>
34. Featherstone JDB. The science and practice of caries prevention. J Am Dent Assoc 2000; 131:887–899. <https://doi.org/10.14219/jada.archive.2000.0307>
35. Featherstone JDB, Duncan JF, Cutress TW: A Mechanism for Dental Caries Based on Chemical Processes and Diffusion Phenomena During in vitro Caries Simulation on Human Tooth Enamel. Arch Oral Biol 1979; 24:101–112. <https://doi.org/10.1016/0003-9969(79)90057-8>
36. Feng Y, Yin W, Hu D, Zhang YP, Ellwood RP, Pretty IA. Assessment of autofluorescence to detect the remineralization capabilities of sodium fluoride, monofluorophosphate and non-fluoride dentifrices. A single-blind cluster randomized trial. Caries Res. 2007; 41(5):358–64. <https://doi.org/10.1159/000104793>
37. Ferreira, Rívea Ines, Haiter-Neto, Francisco, Tabchoury, Cínthia Pereira Machado et al. Assessment of enamel demineralization using conventional, digital, and digitized radiography. Braz. oral res. 2006; 20(2):114–119. <https://doi.org/10.1590/S1806-83242006000200005>
38. Francis MD, Briner WW, Gray JA. Chemical Agents In The Control Of Calcification Processes In Biological Systems. In Hard Tissue Growth, Repair And Remineralization. K. Elliot And D.W. Fitzsimons, Eds. Ciba Foundation Symposium, No. 11, Amsterdam: Elsevier 1973;57–90.
39. Going RE, Loesche WJ, Grainger DA, Syed SA. The viability of micro-organisms in carious lesions five years after covering with a fissure sealant. J Am Dent Assoc 1978; 97:455–462. <https://doi.org/10.14219/jada.archive.1978.0327>
40. Gray JA. Chemical Events During Cariogenesis. In: Proceedings Of The Symposium On Incipient Caries Of Enamel, N.H. Rowe, Ed., Ann Arbor: University Of Michigan 1977;19–28.
41. Gray JA, Francis MD. Physical Chemistry Of Enamel Dissolution. In: Destruction Of Hard Tissues, Sognnaes RF, Ed. Washington: Publication No. 75 Of The American Association For The Advancement Of Science 1963; 213–260.
42. Groeneveld A, Arends J: Influence Of Ph And Demineralization Time On Mineral Content, Thickness Of Surface Layer And Depth Of Artificial Caries Lesion. Caries Res 1975; 9:36–44. <https://doi.org/10.1159/000260140>
43. Gustafsson A, Svenson B, Edblad E, Jansson L. Progression rate of approximal carious lesions in Swedish teenagers and the correlation between experience and radiographic behavior. An analysis of the survival rate of approximal caries lesions. Acta Odontol Scand 2000; 58:195–200.
44. Haikel Y, Frank RM, Voegel JC. Scanning Electron Microscopy of the Human Enamel Surface Layer of Incipient Carious Lesions. Caries Res 1983; 17:1–14. <https://doi.org/10.1159/000260643>
45. Hildebrandt GH, Sparks BS. Maintaining mutans streptococci suppression with xylitol chewimg gum. J Am Dent Assoc 2000; 131:909–916. <https://doi.org/10.14219/jada.archive.2000.0309>
46. Hintze H, Wenzel A, Jones C. In vitro comparison of D- and E-speed film radiography, RVG, and visualix digital radiography for the detection of enamel approximal and dentinal occlusal caries lesions. Caries Res. 1994; 28(5):363–7. <https://doi.org/10.1159/000262002>
47. Hollander F, Saper E. The Apparent Radiopaque Surface Layer of the Enamel. Dent Cosmos 1935; 77:1187–1197.
48. Jeon RJ, Matvienko A, Mandelis A, Abrams SH, Amaechi BT, Kulkarni G. Detection of interproximal demineralized lesions on human teeth in vitro using frequency-domain infrared photothermal radiometry and modulated luminescence. J Biomed Opt. 2007; 12(3):034028. <https://doi.org/10.1117/1.2750289>
49. Jones RS, Darling CL, Featherstone JD, Fried D. Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography. J Biomed Opt. 2006; 11(1):014016. <https://doi.org/10.1117/1.2161192>
50. Kaufman HW, Pollock JJ, Murphy J, Lunardi S, Vlak J: Factors Involved In Artificial Caries Formation By Oral Streptococci In Extracted Human Teeth. J Dent Res 1984; 63:653–657. <https://doi.org/10.1177/00220345840630050901>
51. Ko AC, Choo-Smith LP, Hewko M, Leonardi L, Sowa MG, Dong CC, Williams P, Cleghorn B. Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy. J Biomed Opt. 2005 May-Jun; 10(3):031118. <https://doi.org/10.1117/1.1915488>
52. Koulourides T, Feagin F, Pigman W: Remineralization Of Dental Enamel By Saliva In Vitro. Ann Ny Acad Sci 1965; 131:751–757. <https://doi.org/10.1111/j.1749-6632.1965.tb34839.x>
53. Krasse B. Biological factors as indicators of future caries. Int Dent J 1988; 38:219–225.
54. Lagerweij MD, Ten Cate JM. Remineralisation of enamel lesions with daily applications of a high-concentration fluoride gel and fluoridated toothpaste: an in situ study. Caries Res 2002; 36:270–274. <https://doi.org/10.1159/000063929>
55. Langdon DJ, Elliott JC, Fearnhead RW. Microradiographic Observation Of Acidic Subsurface Decalcification In Synthetic Apatite Aggregates. Caries Res 1980; 14:359–366. <https://doi.org/10.1159/000260478>
56. Larsen MJ. Chemically Induced In Vitro Lesions In Dental Enamel. Scand J Dent Res 1974; 82:496–509.
57. LeGeros RZ (1991). Calcium phosphates in oral biology and medicine. Basel: Karger.
58. Margolis HC, Moreno EC. Kinetic And Thermodynamic Aspects Of Enamel Demineralization. Caries Res 1985; 19:22–35. <https://doi.org/10.1159/000260826>
59. Margolis HC, Murphy BJ, Moreno EC. Development Of Carious Like Lesions In Partially Saturated Lactate Buffers. Caries Res 1985; 19:36–45. <https://doi.org/10.1159/000260827>
60. Meckel AH. The Nature And Importance Of Organic Deposits On Dental Enamel. Caries Res 1968; 2:104–114. <https://doi.org/10.1159/000259549>
61. Mejare I, Källestal C, Stenlund H. Incidence and progression of approximal caries from 11 to 22 years of age in Sweden: a prospective radiographic study. Caries Res 1999; 33:93–100. <https://doi.org/10.1159/000016502>
62. Mertz-Fairhurst EJ, Curtis JW Jr, Ergle JW, Rueggeberg FA, Adair SM. Ultraconservative and cariostatic sealed restorations: results at year 10. J Am Dent Assoc 1998; 129:55–66. <https://doi.org/10.14219/jada.archive.1998.0022>
63. Mor BM, Rodda JC. Histopathology of Artificial Carious Lesions Produced by Lactate Buffers with Additives (Abstract). NZ Dent J 1979; 75:218.
64. Moreno EC: The Effect Of Acquired Pellicle On Enamel Demineralization, Proc Int Symp Acid Etch Techn, L.M. Silverstone And L. Dogan, Eds., St. Paul, Mn: North Central Publ. Co., 1975;1–12.
65. Moreno EC, Zahradnik RT: Chemistry Of Enamel Subsurface Demineralization In Vitro. J Dent Res 1974; 53:226–235. <https://doi.org/10.1177/00220345740530020901>
66. Nielsen AE. Electrolyte Crystal Growth Mechanisms. J Crystal Growth 1984; 67:289–310. <https://doi.org/10.1016/0022-0248(84)90189-1>
67. Nielsen AE, Toft JM. Electrolyte Crystal Growth Kinetics. J Crystal Growth 1984; 67:278–288. <https://doi.org/10.1016/0022-0248(84)90188-X>
68. Ogaard B. Studies On Topical Fluoride Interaction With Sound And Demineralized Enamel In Vivo. Thesis, University Of Oslo 1985;5: 1–16.
69. Ogaard B, Arends J, Schuthof J, Rolla G, Ekstrand J (1986): Action Of Fluoride On Initiation Of Early Enamel Caries In Vivo A Microradiographic Investigation, Caries Res (In Press).
70. Pitts NB, Longbottom C. Temporary tooth separation with special reference to the diagnosis and preventive management of equivocal approximal carious lesions. Quintessence Int 1987; 18:563–573.
71. Pretty IA. Caries detection and diagnosis: novel technologies. J Dent. 2006; 34(10):727–39. <https://doi.org/10.1016/j.jdent.2006.06.001>
72. Rousseau C, Poland S, Girkin JM, Hall AF, Whitters CJ. Development of fibreoptic confocal microscopy for detection and diagnosis of dental caries. Caries Res. 2007; 41(4):245–51. <https://doi.org/10.1159/000101912>
73. Santiago S. Gomez, Cristian P. Basili, Claes-Göran Emilson. A 2-year clinical evaluation of sealed noncavitated approximal posterior carious lesions in adolescents. Clinical Oral Investigations 2005; 9(4):239–243.
74. Schneiderman A, Elbaum M, Shultz T, Keem S, Greenebaum M, Driller J. Assessment of dental caries with Digital Imaging Fiber-Optic TransIllumination (DIFOTI): in vitro study. Caries Res. 1997; 31(2):103–10. <https://doi.org/10.1159/000262384>
75. Schweizer CM, Schait A, Schmid R, Imfeld T et al. Erosion Und Abrasion des Schmelzes. Schweiz Monatschr Zahnheilk 1978; 88:497–509.
76. Silva MF, Giniger MS, Zhang YP, De Vizio W. The effect of a triclosan/copolymer/ fluoride liquid dentifrice on interproximal enamel remineralization and fluoride uptake. J Am Dent Assoc 2004; 135:1023–1029. <https://doi.org/10.14219/jada.archive.2004.0343>
77. Silverstone I.M: The Influence of Acidified Organic Gels On the Enamel Surface in vitro. In: Tooth Enamel, Vol. II, R.W. Fearnhead, Ed., Bristol: Wright, 1971: 197–202.
78. Silverstone LM: The Surface Zone In Caries And In Caries-Like Lesions Produced In Vitro. Br Dent J 1968; 125:145–157.
79. Simonsen RJ. Pit and fissure sealant: review of the literature. Pediatr Dent 2002; 24:393–414.
80. Söderling E, Isokangas P, Pienihakkinen K, Tenovuo J. Influence of maternal xylitol consumption on acquisition of mutans streptococci by infants. J Dent Res 2000; 79:882–887. <https://doi.org/10.1177/00220345000790031601>
81. Stern RJ, Driscoll WS, Korts DC. Enamel Biopsy Results Of Children Receiving Fluoride Tablets (Abstract). J Dent Res 1976; 55(91):119.
82. Swift EJ Jr. The effect of sealants on dental caries: a review. J Am Dent Assoc 1988; 116:700–704. <https://doi.org/10.14219/jada.archive.1988.0031>
83. Ten Cate JM, Duisters PPE: Influence Of Fluoride In Solution On Tooth Demineralization. I. Chemical Data. Caries Res (1983a); 17:193–199. <https://doi.org/10.1159/000260667>
84. Ten Cate JM, Duysters PPE: Influence Of Fluoride In Solution On Tooth Demineralization. Ii. Microradiographic Data. Caries Res (1983b); 17:513–519. <https://doi.org/10.1159/000260711>
85. Theuns HM, Van Dijk JWE, Driessens FCM, Groeneveld A: The Influence Of The Composition Of Demineralizing Buffers On The Surface Layers Of Artificial Carious Lesions. Caries Res 1984; 18:509–518. <https://doi.org/10.1159/000260813>
86. Theuns HM, Van Dijk JWE, Driessens FCM, Groeneveld A. The Surface Layer During Artificial Carious Lesion Formation. Caries Res 1984; 18:97–102. <https://doi.org/10.1159/000260756>
87. Thewlis, J. (1940): The Structure of Teeth as Shown by X-ray Examination. Spec. Rep. No. 238 of the Medical Research Council, London: HMSO.
88. Thylstrup A, Featherstone JDB, Fredebo L:Surface Morphology and Dynamics of Early Enamel Caries Development. In: Demineralization and Remineralization of Teeth, S.A. Leach and W.M. Edgar, Eds., Oxford: IRL Press, 1983;165–184.
89. Thylstrup A, Fredebo, L.: A Method for Studying Surface Coatings and the Underlying Features in SEM. In: Surface and Colloid Phenomena in the Oral Cavity, R.M. Frank and S.A. Leach, Eds., Oxford: IRL Press,1982;169–184.
90. Thylstrup A, Holmen L, 6gaard B: Histologic Features During Development Of White Spot Lesions In Vivo (Abstract). Iadr 1984; 62:760.
91. Van Dijk JWE, Borggreven JMPM, Driessens FCM: Chemical And Mathematical Simulation Of Caries. Caries Res 1979; 13:169–180. <https://doi.org/10.1159/000260398>
92. Von Bartheld F. Decalcification In Initial Caries, Tijdschrift Voor Tandheelkunde 1958; 65:76–88.
93. Von Bartheld F. Membrane Phenomena In Carious Dissolution Of Teeth. Arch Oral Biol (Spec Suppl) 1961; 6:284–303. <https://doi.org/10.1016/0003-9969(61)90047-4>
94. Weatherell JA, Hallsworth AS, Robinson C. The Effect Of Tooth Wear On The Distribution Of Fluoride In The Enamel Surface Of Human Teeth. Arch Oral Biol 1973; 18:1175–1189. <https://doi.org/10.1016/0003-9969(73)90090-3>
95. Wenzel A, Verdonschot EH, Truin GJ, Konig KG. Accuracy of Visual Inspection, Fiber-optic Transillumination, and Various Radiographic Image Modalities for the Detection of Occlusal Caries in Extracted Non-cavitated Teeth. J Dent Res 1992; 71(12):1934–1937. <https://doi.org/10.1177/00220345920710121501>
96. Westerman GH, Hicks JM, Flaitz CM, Powell LG. In vitro caries formation in primary tooth enamel – Role of argon laser irradiation and remineralizing solution treatment. J Am Dent Assoc 137; 5:638–644. <https://doi.org/10.14219/jada.archive.2006.0260>
97. Yang J, Dutra V. Utility of radiology, laser fluorescence, and transillumination. Dent Clin North Am. 2005; 49(4):739–52. <https://doi.org/10.1016/j.cden.2005.05.010>
98. Yassin OM. In vitro studies of the effect of a dental explorer on the formation of an artificial carious lesion. ASDC J Dent Child. 1995; 62(2):111–7.
99. Young DA. New caries detection technologies and modern caries management: merging the strategies. Gen Dent. 2002; 50(4):320–31.
100. Young DA, Featherstone JDB. Digital Imaging Fiber-Optic Trans-Illumination, F-speed radiographic film and depth of approximal lesions. J Am Dent Assoc 136; 12:1682–1687. <https://doi.org/10.14219/jada.archive.2005.0111>
101. Zahradnik RT, Moreno EC, Burke EJ. Effect Of Salivary Pellicle On Enamel Subsurface Demineralization In Vitro. J Dent Res 1976; 55:664–670. <https://doi.org/10.1177/00220345760550042101>
102. Zahradnik RT, Propas D, Moreno EC. In Vitro Enamel Demineralization By Strep. Mutans In The Presence Of Salivary Pellicles. J Dent Res 1977; 56: 1107–1110. <https://doi.org/10.1177/00220345770560091601>
103. Zimmerman SO. A Mathematical Theory Of Enamel Solubility And The Onset Of Dental Caries. Iii. Development And Computer Simulation Of A Model Of Caries Formation. Bull Math Biophys 1966; 65:(I 11)28:443–464. <https://doi.org/10.1007/BF02476825>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive