Acta Med. 2008, 51: 145-149
https://doi.org/10.14712/18059694.2017.16
Early Enamel Lesion: Part I. – Classification and Detection
References
1. Arch Oral Biol 1972; 17:1705–1714.
< R, Depaola PF, Brudevold F. Effects Of Daily Rinsing And Ingestion Of Fluoride Upon Dental Caries And Enamel Fluoride. https://doi.org/10.1016/0003-9969(72)90233-6>
2. Caries Res 2003; 37(1):17–23.
< V, Seppä L, Hausen H. Clinical study of the use of the laser fluorescence device DIAGNOdent for detection of occlusal caries in children. https://doi.org/10.1159/000068227>
3. J Dent Res 1940; 19:41–46.
< E. The Radiopaque Surface Layer of Enamel and Caries. https://doi.org/10.1177/00220345400190010501>
4. J Dent Res 1986; 65(1):2–11.
< J, Christoffersen J. Invited Review Article The Nature of Early Caries Lesions in Enamel https://doi.org/10.1177/00220345860650010201>
5. Caries Res 1983; 17:455–457.
< J, Christoffersen J, Christoffersen MR, Schuthof J. Influence Of Fluoride Concentration On The Progress Of Demineralization In Bovine Enamel At Ph 4.5, https://doi.org/10.1159/000260700>
6. Arends J, Jongebloed WL, Schuthof J. The Ultrastructure of Surface Enamel in Relation to De- and Remineralization. In: Demineralization and Remineralization of the Teeth, S.A. Leach and W.M. Edgar, Eds., Oxford: IRL Press, 1983;155–164.
7. Arends J, Ogaard B, Ekstrand J, Rolla G. Experimental Caries In Man; A Microradiographic Investigation (Abstract). IADR 1984;62: 761.
8. J Biol Buccale 1980; 8:175–181.
J, Schuthof J. Microhardness and LesionDepth Studies of Artificial Carious Lesions: A Comparison of Gelatin and HEC Based Systems.
9. Caries Res 1980; 14:190–195.
< J, Schuthof J, Jongebloed WL. Lesion Depth And Microhardness Indentations On Artificial White Spot Lesions. https://doi.org/10.1159/000260453>
10. International Journal of Paediatric Dentistry 10; 2:166–171.
< P. Diagnosis of occlusal caries in primary teeth. https://doi.org/10.1046/j.1365-263x.2000.00189.x>
11. Journal of Dentistry 26; 2:83–88.
< PF, Blinkhorn AS, Davies RM. Occlusal caries diagnosis: an in vitro histological validation of the Electronic Caries Monitor (ECM) and other methods. https://doi.org/10.1016/S0300-5712(97)00007-9>
12. J Dent Res 1953; 32:830–839.
< FC. Caries like Enamel Changes by Chemical Means. https://doi.org/10.1177/00220345530320061101>
13. Quintessence Int 1996; 27:249–251.
S. Temporary tooth separation in the treatment of approximal carious lesions.
14. Caries Res 1985; 19:396–403.
< PCF, Van Der Mei HC, Arends J. Enamel Lesion Formation With And Without 0.12 Ppm F In Solution. https://doi.org/10.1159/000260873>
15. Brudevold F, Mccann H, Gron P. Dental Caries In Caries Resistant Teeth as Related to the Chemistry of Enamel, G.E.W. Wolstenholm, Ed., London: Churchill, 1965;121–141.
16. Caries Res 1985; 19:490–496.
< JAKM, Christoffersen J, Arends J. Lesion Formation And Lesion Remineralization In Enamel Under Constant Composition Conditions. https://doi.org/10.1159/000260887>
17. Christoffersen J. The Kinetics Of Dissolution Of Calcium Hydroxyapatite. A Contribution To The Understanding Of Biological Demineralization (Dissertation). Copenhagen, Denmark: University Of Copenhagen, 1984.
18. Caries Res 1982; 16:433–439.
< J, Arends J: Progress Of Artificial Carious Lesions In Enamel. https://doi.org/10.1159/000260633>
19. Dissolution 1979; 65:I9.
J, Christoffersen MR: Kinetics Of Dissolution Of Calcium Hydroxyapatite. Ii.
20. Caries Res 1981; 15:158–165.
< BH, Wefel JS, Silverstone LM. Redistribution of Enamel Fluoride During White Spot Lesion Formation: An In Vitro Study on Human Dental Enamel. https://doi.org/10.1159/000260513>
21. J Oral Surg 1955; 8:1204–1210.
< TB, Besic FC, Jacobs MH. A Microscopic Comparison of Clinically and Artificially Produced Changes in Enamel. https://doi.org/10.1016/0030-4220(55)90384-4>
22. Caries Res. 2000; 34(6):443–7.
< DF, Ekstrand KR, Elias-Boneta AR, Ellwood RP. An in vitro comparison of the ability of fibre-optic transillumination, visual inspection and radiographs to detect occlusal caries and evaluate lesion depth. https://doi.org/10.1159/000016621>
23. Br Dent J 1956; 101:289–297, 329–341.
AI. Studies Of The Early Lesion Of Enamel Caries With Transmitted Light, Polarized Light And Radiography.
24. Deery C, Toumba. Diagnosis and prevention of dental caries. In: Welbury R, Duggal MS, Hosey MT 3rd eds. Paediatric Dentistry. Oxford Univ Press 2005:109.
25. J Am Dent Assoc 1999; 130:817–825.
< KJ, Segura A, Wefel JS, Hogan MM. Evaluating the effects of fluoride-releasing dental materials on adjacent interproximal caries. https://doi.org/10.14219/jada.archive.1999.0305>
26. Caries Res 2004; 38:361 (Abstr 12).
KR, Martignon S. Managing approximal carious lesions: a non-operative approach.
27. J Am Dent Assoc 1967; 75:638–644.
< HR, Keyes PH, Gestwicki M, Sultz HA. Clinical Anti-Caries Effect Of Repeated Topical Sodium Fluoride Applications By Mouthrinses. https://doi.org/10.14219/jada.archive.1967.0266>
28. Oral Health Prev Dent 2003; 1:59–72.
D, Kidd E, McComb D, Mjör I, Noack MJ. Minimally invasive dentistry— concepts and techniques in cariology.
29. Adv Dent Res 1995; 9:1–340.
JD. Clinical aspects of de/remineralization of teeth.
30. Featherstone JD (1983). Diffusion phenomena and enamel caries development. In: Cariology today. Int. Congr., 1984. Zürich: Karger.
31. J Dent Res 1977; 56(D):48–52.
< JDB: Diffusion Phenomena During Artificial Carious Lesion Formation. https://doi.org/10.1177/002203457705600409011>
32. Community Dent Oral Epidemiol 1999; 27:31–40.
< JDB. Prevention and reversal of dental caries: role of low level fluoride. https://doi.org/10.1111/j.1600-0528.1999.tb01989.x>
33. J Dent Res 83 (Spec Iss C) 2004; C39–C42.
< JDB. The Continuum of Dental Caries—Evidence for a Dynamic Disease Process. https://doi.org/10.1177/154405910408301s08>
34. J Am Dent Assoc 2000; 131:887–899.
< JDB. The science and practice of caries prevention. https://doi.org/10.14219/jada.archive.2000.0307>
35. Arch Oral Biol 1979; 24:101–112.
< JDB, Duncan JF, Cutress TW: A Mechanism for Dental Caries Based on Chemical Processes and Diffusion Phenomena During in vitro Caries Simulation on Human Tooth Enamel. https://doi.org/10.1016/0003-9969(79)90057-8>
36. Caries Res. 2007; 41(5):358–64.
< Y, Yin W, Hu D, Zhang YP, Ellwood RP, Pretty IA. Assessment of autofluorescence to detect the remineralization capabilities of sodium fluoride, monofluorophosphate and non-fluoride dentifrices. A single-blind cluster randomized trial. https://doi.org/10.1159/000104793>
37. Braz. Oral Res. 2006; 20(2):114–119.
< , Rívea Ines, Haiter-Neto, Francisco, Tabchoury, Cínthia Pereira Machado et al. Assessment of enamel demineralization using conventional, digital, and digitized radiography. https://doi.org/10.1590/S1806-83242006000200005>
38. Francis MD, Briner WW, Gray JA. Chemical Agents In The Control Of Calcification Processes In Biological Systems. In Hard Tissue Growth, Repair And Remineralization. K. Elliot And D.W. Fitzsimons, Eds. Ciba Foundation Symposium, No. 11, Amsterdam: Elsevier 1973;57–90.
39. J Am Dent Assoc 1978; 97:455–462.
< RE, Loesche WJ, Grainger DA, Syed SA. The viability of micro-organisms in carious lesions five years after covering with a fissure sealant. https://doi.org/10.14219/jada.archive.1978.0327>
40. Gray JA. Chemical Events During Cariogenesis. In: Proceedings Of The Symposium On Incipient Caries Of Enamel, N.H. Rowe, Ed., Ann Arbor: University Of Michigan 1977;19–28.
41. Gray JA, Francis MD. Physical Chemistry Of Enamel Dissolution. In: Destruction Of Hard Tissues, Sognnaes RF, Ed. Washington: Publication No. 75 Of The American Association For The Advancement Of Science 1963;213–260.
42. Caries Res 1975; 9:36–44.
< A, Arends J: Influence Of Ph And Demineralization Time On Mineral Content, Thickness Of Surface Layer And Depth Of Artificial Caries Lesion. https://doi.org/10.1159/000260140>
43. Acta Odontol Scand 2000; 58:195–200.
A, Svenson B, Edblad E, Jansson L. Progression rate of approximal carious lesions in Swedish teenagers and the correlation between experience and radiographic behavior. An analysis of the survival rate of approximal caries lesions.
44. Caries Res 1983; 17:1–14.
< Y, Frank RM, Voegel JC. Scanning Electron Microscopy of the Human Enamel Surface Layer of Incipient Carious Lesions. https://doi.org/10.1159/000260643>
45. J Am Dent Assoc 2000; 131:909–916.
< GH, Sparks BS. Maintaining mutans streptococci suppression with xylitol chewimg gum. https://doi.org/10.14219/jada.archive.2000.0309>
46. Caries Res. 1994; 28(5):363–7.
< H, Wenzel A, Jones C. In vitro comparison of D- and E-speed film radiography, RVG, and visualix digital radiography for the detection of enamel approximal and dentinal occlusal caries lesions. https://doi.org/10.1159/000262002>
47. Dent Cosmos 1935; 77:1187–1197.
F, Saper E. The Apparent Radiopaque Surface Layer of the Enamel.
48. J Biomed Opt. 2007; 12(3):034028.
< RJ, Matvienko A, Mandelis A, Abrams SH, Amaechi BT, Kulkarni G. Detection of interproximal demineralized lesions on human teeth in vitro using frequency-domain infrared photothermal radiometry and modulated luminescence. https://doi.org/10.1117/1.2750289>
49. J Biomed Opt. 2006; 11(1):014016.
< RS, Darling CL, Featherstone JD, Fried D. Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography. https://doi.org/10.1117/1.2161192>
50. J Dent Res 1984; 63:653–657.
< HW, Pollock JJ, Murphy J, Lunardi S, Vlak J: Factors Involved In Artificial Caries Formation By Oral Streptococci In Extracted Human Teeth. https://doi.org/10.1177/00220345840630050901>
51. J Biomed Opt. 2005 May-Jun; 10(3):031118.
< AC, Choo-Smith LP, Hewko M, Leonardi L, Sowa MG, Dong CC, Williams P, Cleghorn B. Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy. https://doi.org/10.1117/1.1915488>
52. Ann Ny Acad Sci 1965; 131:751–757.
< T, Feagin F, Pigman W: Remineralization Of Dental Enamel By Saliva In Vitro. https://doi.org/10.1111/j.1749-6632.1965.tb34839.x>
53. Int Dent J 1988; 38:219–225.
B. Biological factors as indicators of future caries.
54. Caries Res 2002; 36:270–274.
< MD, Ten Cate JM. Remineralisation of enamel lesions with daily applications of a high-concentration fluoride gel and fluoridated toothpaste: an in situ study. https://doi.org/10.1159/000063929>
55. Caries Res 1980; 14:359–366.
< DJ, Elliott JC, Fearnhead RW. Microradiographic Observation Of Acidic Subsurface Decalcification In Synthetic Apatite Aggregates. https://doi.org/10.1159/000260478>
56. Scand J Dent Res 1974; 82:496–509.
MJ. Chemically Induced In Vitro Lesions In Dental Enamel.
57. LeGeros RZ (1991). Calcium phosphates in oral biology and medicine. Basel: Karger.
58. Caries Res 1985; 19:22–35.
< HC, Moreno EC. Kinetic And Thermodynamic Aspects Of Enamel Demineralization. https://doi.org/10.1159/000260826>
59. Caries Res 1985; 19:36–45.
< HC, Murphy BJ, Moreno EC. Development Of Carious Like Lesions In Partially Saturated Lactate Buffers. https://doi.org/10.1159/000260827>
60. Caries Res 1968; 2:104–114.
< AH. The Nature And Importance Of Organic Deposits On Dental Enamel. https://doi.org/10.1159/000259549>
61. Caries Res 1999; 33:93–100.
< I, Källestal C, Stenlund H. Incidence and progression of approximal caries from 11 to 22 years of age in Sweden: a prospective radiographic study. https://doi.org/10.1159/000016502>
62. J Am Dent Assoc 1998; 129:55–66.
< EJ, Curtis JW Jr, Ergle JW, Rueggeberg FA, Adair SM. Ultraconservative and cariostatic sealed restorations: results at year 10. https://doi.org/10.14219/jada.archive.1998.0022>
63. NZ Dent J 1979; 75:218.
BM, Rodda JC. Histopathology of Artificial Carious Lesions Produced by Lactate Buffers with Additives (Abstract).
64. Moreno EC: The Effect Of Acquired Pellicle On Enamel Demineralization, Proc Int Symp Acid Etch Techn, L.M. Silverstone And L. Dogan, Eds., St. Paul, Mn: North Central Publ. Co., 1975; 1–12.
65. J Dent Res 1974; 53:226–235.
< EC, Zahradnik RT: Chemistry Of Enamel Subsurface Demineralization In Vitro. https://doi.org/10.1177/00220345740530020901>
66. J Crystal Growth 1984; 67:289–310.
< AE. Electrolyte Crystal Growth Mechanisms. https://doi.org/10.1016/0022-0248(84)90189-1>
67. J Crystal Growth 1984; 67:278–288.
< AE, Toft JM. Electrolyte Crystal Growth Kinetics. https://doi.org/10.1016/0022-0248(84)90188-X>
68. Ogaard B. Studies On Topical Fluoride Interaction With Sound And Demineralized Enamel In Vivo. Thesis, University Of Oslo 1985;5: 1–16.
69. Ogaard B, Arends J, Schuthof J, Rolla G, Ekstrand J (1986): Action Of Fluoride On Initiation Of Early Enamel Caries In Vivo A Microradiographic Investigation, Caries Res (In Press).
70. Quintessence Int 1987; 18:563–573.
NB, Longbottom C. Temporary tooth separation with special reference to the diagnosis and preventive management of equivocal approximal carious lesions.
71. J Dent. 2006; 34(10):727–39.
< IA. Caries detection and diagnosis: novel technologies. https://doi.org/10.1016/j.jdent.2006.06.001>
72. Caries Res. 2007; 41(4):245–51.
< C, Poland S, Girkin JM, Hall AF, Whitters CJ. Development of fibreoptic confocal microscopy for detection and diagnosis of dental caries. https://doi.org/10.1159/000101912>
73. Clinical Oral Investigations 2005; 9(4):239–243.
S. Gomez, Cristian P. Basili, Claes-Göran Emilson. A 2-year clinical evaluation of sealed noncavitated approximal posterior carious lesions in adolescents.
74. Caries Res. 1997; 31(2):103–10.
< A, Elbaum M, Shultz T, Keem S, Greenebaum M, Driller J. Assessment of dental caries with Digital Imaging Fiber-Optic TransIllumination (DIFOTI): in vitro study. https://doi.org/10.1159/000262384>
75. Schweiz Monatschr Zahnheilk 1978; 88:497–509.
CM, Schait A, Schmid R, Imfeld T et al. Erosion Und Abrasion des Schmelzes,
76. J Am Dent Assoc 2004; 135:1023–1029.
< MF, Giniger MS, Zhang YP, De Vizio W. The effect of a triclosan/copolymer/ fluoride liquid dentifrice on interproximal enamel remineralization and fluoride uptake. https://doi.org/10.14219/jada.archive.2004.0343>
77. Silverstone I.M: The Influence of Acidified Organic Gels On the Enamel Surface in vitro. In: Tooth Enamel, Vol. II, R.W. Fearnhead, Ed., Bristol: Wright, 1971: 197–202.
78. Br Dent J 1968; 125:145–157.
LM: The Surface Zone In Caries And In Caries-Like Lesions Produced In Vitro.
79. Pediatr Dent 2002; 24:393–414.
RJ. Pit and fissure sealant: review of the literature.
80. J Dent Res 2000; 79:882–887.
< E, Isokangas P, Pienihakkinen K, Tenovuo J. Influence of maternal xylitol consumption on acquisition of mutans streptococci by infants. https://doi.org/10.1177/00220345000790031601>
81. J Dent Res 1976; 55(91):119.
RJ, Driscoll WS, Korts DC. Enamel Biopsy Results Of Children Receiving Fluoride Tablets (Abstract).
82. J Am Dent Assoc 1988; 116:700–704.
< EJ Jr. The effect of sealants on dental caries: a review. https://doi.org/10.14219/jada.archive.1988.0031>
83. Caries Res (1983a); 17:193–199.
< JM, Duisters PPE: Influence Of Fluoride In Solution On Tooth Demineralization. I. Chemical Data. https://doi.org/10.1159/000260667>
84. Caries Res (1983b); 17:513–519.
< JM, Duysters PPE: Influence Of Fluoride In Solution On Tooth Demineralization. Ii. Microradiographic Data. https://doi.org/10.1159/000260711>
85. Caries Res 1984; 18:509–518.
< HM, Van Dijk JWE, Driessens FCM, Groeneveld A: The Influence Of The Composition Of Demineralizing Buffers On The Surface Layers Of Artificial Carious Lesions. https://doi.org/10.1159/000260813>
86. Caries Res 1984; 18:97–102.
< HM, Van Dijk JWE, Driessens FCM, Groeneveld A. The Surface Layer During Artificial Carious Lesion Formation. https://doi.org/10.1159/000260756>
87. Thewlis, J. (1940): The Structure of Teeth as Shown by X-ray Examination. Spec. Rep. No. 238 of the Medical Research Council, London: HMSO.
88. Thylstrup A, Featherstone JDB, Fredebo L:Surface Morphology and Dynamics of Early Enamel Caries Development. In: Demineralization and Remineralization of Teeth, S.A. Leach and W.M. Edgar, Eds., Oxford: IRL Press, 1983;165–184.
89. Thylstrup A, Fredebo, L.: A Method for Studying Surface Coatings and the Underlying Features in SEM. In: Surface and Colloid Phenomena in the Oral Cavity, R.M. Frank and S.A. Leach, Eds., Oxford: IRL Press,1982;169–184.
90. Iadr 1984; 62:760.
A, Holmen L, 6gaard B: Histologic Features During Development Of White Spot Lesions In Vivo (Abstract).
91. Caries Res 1979; 13:169–180.
< JWE, Borggreven JMPM, Driessens FCM: Chemical And Mathematical Simulation Of Caries, https://doi.org/10.1159/000260398>
92. Tijdschrift Voor Tandheelkunde 1958; 65:76–88.
F. Decalcification In Initial Caries,
93. Arch Oral Biol (Spec Suppl) 1961; 6:284–303.
< F. Membrane Phenomena In Carious Dissolution Of Teeth. https://doi.org/10.1016/0003-9969(61)90047-4>
94. Arch Oral Biol 1973; 18:1175– 1189.
< JA, Hallsworth AS, Robinson C. The Effect Of Tooth Wear On The Distribution Of Fluoride In The Enamel Surface Of Human Teeth. https://doi.org/10.1016/0003-9969(73)90090-3>
95. J Dent Res 1992; 71(12):1934–1937.
< A, Verdonschot EH, Truin GJ, Konig KG. Accuracy of Visual Inspection, Fiber-optic Transillumination, and Various Radiographic Image Modalities for the Detection of Occlusal Caries in Extracted Non-cavitated Teeth. https://doi.org/10.1177/00220345920710121501>
96. J Am Dent Assoc 137; 5:638–644.
< GH, Hicks JM, Flaitz CM, Powell LG. In vitro caries formation in primary tooth enamel – Role of argon laser irradiation and remineralizing solution treatment. https://doi.org/10.14219/jada.archive.2006.0260>
97. Dent Clin North Am. 2005; 49(4):739–52.
< J, Dutra V. Utility of radiology, laser fluorescence, and transillumination. https://doi.org/10.1016/j.cden.2005.05.010>
98. ASDC J Dent Child. 1995; 62(2):111–7.
OM. In vitro studies of the effect of a dental explorer on the formation of an artificial carious lesion.
99. Gen Dent. 2002; 50(4):320–31.
DA. New caries detection technologies and modern caries management: merging the strategies.
100. J Am Dent Assoc 136; 12:1682–1687.
< DA, Featherstone JDB. Digital Imaging Fiber-Optic Trans-Illumination, F-speed radiographic film and depth of approximal lesions. https://doi.org/10.14219/jada.archive.2005.0111>
101. J Dent Res 1976; 55:664–670.
< RT, Moreno EC, Burke EJ. Effect Of Salivary Pellicle On Enamel Subsurface Demineralization In Vitro. https://doi.org/10.1177/00220345760550042101>
102. J Dent Res 1977; 56:1107–1110.
< RT, Propas D, Moreno EC. In Vitro Enamel Demineralization By Strep. Mutans In The Presence Of Salivary Pellicles. https://doi.org/10.1177/00220345770560091601>
103. Bull Math Biophys 1966; 65:(I 11)28:443–464.
< SO. A Mathematical Theory Of Enamel Solubility And The Onset Of Dental Caries. Iii. Development And Computer Simulation Of A Model Of Caries Formation. https://doi.org/10.1007/BF02476825>