Acta Med. 2008, 51: 139-144

https://doi.org/10.14712/18059694.2017.15

Cancer Stem Cells – New Approach to Cancerogenensis and Treatment

Zuzana Mačingová, Stanislav Filip

Charles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Department of Oncology and Radiotherapy, Hradec Králové, Czech Republic

Received March 1, 2008
Accepted August 1, 2008

References

1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100:3983–3988. <https://doi.org/10.1073/pnas.0530291100> <PubMed>
2. Ayton PM, Cleary ML. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20:5695–5707. <https://doi.org/10.1038/sj.onc.1204639>
3. Ayton PM, Cleary ML. Transformation of myeloid progenitors by MLL oncoproteins is dependet on Hoxa7 and Hoxa9. Genes Dev 2003; 17:2298–2307. <https://doi.org/10.1101/gad.1111603> <PubMed>
4. Behbod F, Rosen JM. Will cancer stem cells provide new therapeutic targets? Carcinogenesis 2004; 26:703–711. <https://doi.org/10.1093/carcin/bgh293>
5. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med 1997; 730–737. <https://doi.org/10.1038/nm0797-730>
6. Costello T, Mallet F, Gaugler B, Sainty D, Arnoulet C, Gastaut JA, Olive D. Human acute myeloid leukemia CD34+/CD38– progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res 2000; 60: 4403–4411.
7. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Wiessman IL. Similar MLL-Asociated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003; 17:3029–3035. <https://doi.org/10.1101/gad.1143403> <PubMed>
8. DeOme KB, Faulkin LJ, Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 1959; 19:515–520.
9. Dhom G. The cancer cell and the connective tissue. A historical retrospect. Pathologe 1994; 15:271–278. <https://doi.org/10.1007/s002920050054>
10. Domen J, Gandy KL, Weissmann IL. Systemic overexpression of BCL2 in the hematopoietic system protects transgenic mice rom the consequens of irradiation. Blood 1998; 91:2272–2282.
11. Domen J, Weissman IL. Hematopoietic stem cells need two signals to prevent apoptosos; BCL-2 can provide one of these, Kit/c-Kit signaling the other J Exp Med 2000; 192:1707–1718. <https://doi.org/10.1084/jem.192.12.1707> <PubMed>
12. Dontu G, El-Ashry D, Wicha MS. Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab 2004; 15:193–187. <https://doi.org/10.1016/j.tem.2004.05.011>
13. Filip S, English D, Mokrý J. Issues in stem cell plasticity. J Cell Mol Med 2004; 8:572–577. <https://doi.org/10.1111/j.1582-4934.2004.tb00483.x> <PubMed>
14. Filip S, Mokrý J, English D. Stem cell plasticity and carcinogenesis. Neoplasma 2006; 53:87–91.
15. Filip S. The phenomenon of stem cell plasticity: biological or physiological problems? Stem Cell Dev 2006; 15:753. <https://doi.org/10.1089/scd.2006.15.753>
16. Guan Y, Gerhard B, Hogge DE. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 2003; 101:3142–3149. <https://doi.org/10.1182/blood-2002-10-3062>
17. Gudjonsson T, Magnusson MK. Stem cell biology and the cellular pathways of carcinogenesis. APMIS 2005; 113:922–929. <https://doi.org/10.1111/j.1600-0463.2005.apm_371.x>
18. Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med 2006; 355: 1253–1261. <https://doi.org/10.1056/NEJMra061808>
19. Kopper L, Hajdu M. Tumor stem cells. Pathol Oncol Res 2004; 10:69–73. <https://doi.org/10.1007/BF02893458>
20. Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from single cell. Development 1998; 125:1921–1930.
21. Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukemic stem cells. Nature 2003; 423:255–260. <https://doi.org/10.1038/nature01572>
22. Lewis MT, Ross S, Strickland PA, Sugnet CW, Jimenez E, Hui C, Daniel CW. The Gli2 transcription factor is required for normal mouse mammary gland development. Dev Biol 2001; 238:133–144. <https://doi.org/10.1006/dbio.2001.0410>
23. Lewis MT, Ross S, Strickland PA, Sugnet CW, Jimenez E, Scott PM, Daniel CW. Defects in mouse mammary gland development caused by conditional haploinsuffiency of Patched-1. Developement 1999; 126:5181–5193.
24. Lewis MT. Hedgehog signaling in mouse mammary gland development and neoplasia. J Mammary Gland Biol Neoplasia 2001; 6:53–66. <https://doi.org/10.1023/A:1009516515338>
25. Liu BY, McDermott SP, Khwaia SS, Alexander CM. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA 2004; 101:4158–4163. <https://doi.org/10.1073/pnas.0400699101> <PubMed>
26. Marx J. Cancer research; Mutant stem cells may seed cancer. Science 2003; 301:1308–1310. <https://doi.org/10.1126/science.301.5638.1308>
27. Moore MA, Williams N, Metcalf D. In vitro colony formation by normal and leukemic human hematopoietic cells: interraction between colony-forming and colony-stimulating cells. J Natl Cancer Inst. 1973; 50:591–602. <https://doi.org/10.1093/jnci/50.3.591>
28. Morshead CM, Reynolds BA, Craig CG, Magburney MW, Staines WA, Morassutti D, Weiss S, VanDerKooy D. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 1994; 13:1071–1082. <https://doi.org/10.1016/0896-6273(94)90046-9>
29. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423:255–260. <https://doi.org/10.1038/nature01587>
30. Pierce GB, Johnson LD. Differentiation and cancer. In Vitro 1971; 7:140–145. <https://doi.org/10.1007/BF02617957>
31. Quesenberry PJ, Colvin GA, Adebi M, Dooner G, Dooner M, Aliotta J, Keaney P, Luo L, Demers D, Peterson A, Foster B, Greer D. The stem cell continuum. Ann NY Acad Sci 2005; 1044:228–235. <https://doi.org/10.1196/annals.1349.028>
32. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer and cancer stem cells. Nature 2001; 414:105–111. <https://doi.org/10.1038/35102167>
33. Reynolds BA, Tetzlaff W, Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 1992; 12: 4565–4574. <https://doi.org/10.1523/JNEUROSCI.12-11-04565.1992> <PubMed>
34. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous systém. Science 1992; 255:1707–1710. <https://doi.org/10.1126/science.1553558>
35. Robinson WA, Kurnick JE, Pike BL. Colony growth of human leukemic peripheral blood cells in vitro. Blood 1971; 38:500–508.
36. Schreiner S, Birke M, Garcia-Cuellar MP, Zilles O, Greil J, Slany RK. MLL-ENL causes a reversible and myc-dependent block of myelomonocyte cell diffrentiation. Cancer Res 2001; 61:6480–6486.
37. Sell S, Pierce GB. Maturation arest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 1994; 70:6–22.
38. Sell S. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol. 2004; 51:1–28. <https://doi.org/10.1016/j.critrevonc.2004.04.007>
39. Simonovitch L, McCulloch EA, Till JE. The distribution of colony-forming cells among spleen colonies. J Cell Physiol. 1963; 62:327–336. <https://doi.org/10.1002/jcp.1030620313>
40. Singh SK, Clarke LD, Hide T, Dirks PB. Cancer stem cells in nervous system tumors. Oncogene 2004; 23:7267–7273. <https://doi.org/10.1038/sj.onc.1207946>
41. Singh SK, Clarke LD, Terasaki M, Bonn VE, Hawkins C, Squire JA, Dirks PB. Indentification of cancer stem cell in human brain tumors. Cancer Res 2003; 63:5821–5828.
42. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature 2004; 432:396–400. <https://doi.org/10.1038/nature03128>
43. Sorlie T, Tibshirani R, Parker J et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 2003; 100:8418–8423. <https://doi.org/10.1073/pnas.0932692100> <PubMed>
44. Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature 2001; 414:98–104. <https://doi.org/10.1038/35102160>
45. Taiple J, Beachy PA. The Hedgehog and Wnt signaling pathways in cancer. Nature 2001; 411:349–354. <https://doi.org/10.1038/35077219>
46. Trosko JE, Chang CC. Stem cell theory of carcinogenesis. Toxicol Lett. 1989; 49:283. <https://doi.org/10.1016/0378-4274(89)90038-6>
47. Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA. Sca-1 (pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 2002; 245:42–56. <https://doi.org/10.1006/dbio.2002.0625>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive