Acta Med. 2008, 51: 113-119
https://doi.org/10.14712/18059694.2017.12
Evaluation of the Antineoplastic Activity of L-rhamnose in vitro. A Comparison with 2-deoxyglucose
References
1. Br J Cancer. 2002; 87:805–12.
< RL, Zhang FW, Gius D. Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death. https://doi.org/10.1038/sj.bjc.6600547>
<PubMed>
2. Int J Cancer 2001; 96:110–117.
< M, Pigorsch S, Dunst J, Wurl P, Meye A, Barte F, Schmidt H, Rath FW, Taubert H. Loss of G2/M arrest correlates with radiosensitization in two human sarcoma cell lines with mutant p53. https://doi.org/10.1002/ijc.1002>
3. Glycobiology 2003; 13:41R-53R.
< DJ, Lowe JB. Fucose: biosynthesis and biological function in mammals. https://doi.org/10.1093/glycob/cwg054>
4. Gastroenterology 1995; 108:1566–81.
< I, Macpherson A, Hollander D. Intestinal permeability: an overview. https://doi.org/10.1016/0016-5085(95)90708-4>
5. Cancer Res 1992; 52:5794–6.
O, Radnell M, Jeppsson B, Ahrn B, Bengmark S. Inhibitory effect of 2-deoxy- D-glucose on liver tumor growth in rats.
6. J Biol Chem 1966; 241:5910–8.
P, Segal S. Mammalian galactose dehydrogenase. II. Properties, substrate specificity, and developmental changes.
7. Curr Opin Struct Biol 2000; 10:687–96.
< MF, Naismith JH. The rhamnose pathway. https://doi.org/10.1016/S0959-440X(00)00145-7>
8. J Biol Chem 1968; 243:1103–9.
H, Massaro DJ, Heath EC. The metabolism of L-fucose. 3. The enzymatic synthesis of beta-L-fucose 1–phosphate.
9. Cancer Res 1992; 52:71–6.
GS, Arbeit JM, Toy BJ, Speder A, Weiner MW. Selective depletion of tumor ATP by 2-deoxyglucose and insulin, detected by 31P magnetic resonance spectroscopy.
10. Surgery 1987; 102(2):380–5.
KA, Norton JA. Inhibition of established rat fibrosarcoma growth by the glucose antagonist 2-deoxy-D-glucose.
11. Glycoconj J 1997; 14:569–76.
< YJ, Varki A. Perspectives on the significance of altered glycosylation of glycoproteins in cancer. https://doi.org/10.1023/A:1018580324971>
12. Clin Chem Lab Med 2005; 43:361–9.
< B, Ferens-Sieczkowska M, Gancarz R, Passowicz-Muszyska E, Jankowska R. Fucosylation of serum glycoproteins in lung cancer patients. https://doi.org/10.1515/CCLM.2005.066>
13. J Pediatr Gastroenterol Nutr 2006; 43:265–6.
< I, Onkenhout W, Klok M, van der Poel PF, Bovill JG, Hazekamp MG. Rhamnose and rhamnitol in dual sugar permeability tests. https://doi.org/10.1097/01.mpg.0000226379.41365.62>
14. Nature 1961; 192:871–2.
< I, Davidson EA. Isolation and identification of rhamnose from rabbit skin. https://doi.org/10.1038/192871a0>
15. Acta Medica (Hradec Kralove) 2000; 43:69–73.
M, Vávrová J, Vokurková D. Dose dependent biological effects of idarubicin in HL-60 cells: alterations of the cell-cycle and apoptosis.
16. Chem Commun 1998; 19:2119–2120.
< A, Butters TD, Fleet GWJ. A highly cytotoxic L-rhamnose analogue of the antitumour agent spicamycin. https://doi.org/10.1039/a805878d>
17. Mattern J, Kaufmann M, Wayss K, Volm M: Studies on the Drug Sensitivity of Short Term Cultivated Tumour Cell Suspensions. „Human Tumours in Short Term Culture“ (red. Dendy PP), p. 301. London, New York, San Francisco, Academic Press 1976.
18. Mělka M. Průběh inkorporace směsi L-[U-14C] aminokyselin in vitro v závislosti na koncentraci buněk Ehrlichova ascitického karcinomu. Rigorózní práce. Přírodovědecká fakulta University Karlovy v Praze. Praha 1980.
19. Apoptosis 2000; 5:99–105.
< KH, Mueckler MM. Glucose transport and apoptosis. https://doi.org/10.1023/A:1009697908332>
20. Org Biomol Chem 2003, 1: 3685–3691.
< S, GWJ, An approach to the generation of simple analogues of the antitumour agent spicamycin. https://doi.org/10.1039/b307795k>
21. J Surg Oncol 1973; 5:6–9.
< JL, Rosato FE, Allen TR, Miller EE, Roseman J, Rosato EF. Continuous intravenous fucose therapy in rat mammary cancer II. https://doi.org/10.1002/jso.2930050109>
22. Eur J Biochem 1986; 161:701–5.
< M, Buttgereit F, Dumdey R, Rapoport SM. Quantification of ATP-producing and consuming processes of Ehrlich ascites tumour cells. https://doi.org/10.1111/j.1432-1033.1986.tb10496.x>
23. Nejman MB, Gal D. Primenenije radioaktivnych izotopov v chimiceskoj kinetike. Moskva, Nauka 1970.
24. J Surg Oncol 1972; 4:94–101.
< FE, Mullen JL, Rosato EF, Steiger E, Miller EE. Continuous intravenous fucose treatment of rat mammary tumor. https://doi.org/10.1002/jso.2930040204>
25. J Surg Oncol 1971; 3:79–88.
< JM, Miller EE, Seltzer MH, Wolfe D, Rosato FE. The effect of L-fucose on rat mammary tumor growth II. In vitro studies. https://doi.org/10.1002/jso.2930030114>
26. Experientia. 1989; 45:584–8.
< W, Beuth J, Ko HL, Uhlenbruck G, Pulverer G. Blocking of lectinlike adhesion molecules on pulmonary cells inhibits lung sarcoma L-1 colonization in BALB/c-mice. https://doi.org/10.1007/BF01990514>
27. Radiat Res 2002; 158: 699–706.
< , J., Bachtler, J., Engling, A., Little, J. B., Weber, K. J., Wenz, F.: Suppression of apoptosis and clonogenic survival in irradiated human lymphoblasts with different TP53 status. https://doi.org/10.1667/0033-7587(2002)158[0699:SOAACS]2.0.CO;2>
28. Growth 1969; 33: 353–359.
MH, Roseman JM, Wolfe DE, Tsou KC, Miller EE, Rosato FE. The effects of L-fucose on rat mammary tumor growth.
29. J Biol Chem 1954; 210:581–595.
A, Crane RK. Substrate specificity of brain hexokinase.
30. J Leukoc Biol 1992; 52: 188–196.
< J. Fucose-activated killer cells. I. Enhanced TNF-α mRNA accumulation and protein production. https://doi.org/10.1002/jlb.52.2.188>
31. Environ. Biophys 2001; 40:137–143.
< I, Kapiszewska M, John A, Gradska I, Kowalczyk D, Janik P. Caffeineinhibitable control of the radiation-induced G2 arrest in L5178Y-S cells deficient in non-homologous end-joining: Radiat. https://doi.org/10.1007/s004110100089>
32. Int J Radiat Biol 2000; 76:1197–1208.
< T, Binder A, Verheye-Dua F, Bohm L. The role of G2-block abrogation, DNA double–strand break repair and apoptosis in the radiosensitization of melanoma and squamous cell carcinoma cell lines by pentoxifylline. https://doi.org/10.1080/09553000050134438>
33. J Neurochem 1958; 3: 185–205.
< DB. The effects of 2-deoxy-D-glucose on metabolism of slices of cerebral cortex incubated in vitro. https://doi.org/10.1111/j.1471-4159.1958.tb12625.x>
34. Proc Natl Acad Sci U.S.A. 1993; 90:8189–93.
< AA, Norman JA, Bolgar M, DiDonato GC, Lee MH, Parker WL, Lo LC, Berova N, Nakanishi K, Haber E. Physicochemical characterization of a ouabain isomer isolated from bovine hypothalamus. https://doi.org/10.1073/pnas.90.17.8189>
<PubMed>
35. J Biol Chem 2007; 282:18069–82.
< A, Tsichlis PN. Energy Depletion Inhibits Phosphatidylinositol 3-Kinase/ Akt Signaling and Induces Apoptosis via AMP-activated Protein Kinase-dependent Phosphorylation of IRS-1 at Ser-794. https://doi.org/10.1074/jbc.M610101200>
36. Physiol Res 2004; 53:335–342.
J, Mareková M, Vokurková D, Psutka J. Cell cycle alteration and response to low-dose-rate gamma radiation in leukemic cell lines.
37. Radiat Environ Biophys 2003; 42:193–199.
< J, Mareková M, Vokurková D, Szkanderová S, Psutka J. Caffeine induces a second wave of apoptosis after low dose-rate gamma radiation of HL-60 cells. https://doi.org/10.1007/s00411-003-0209-4>
38. Radiační Onkologie 2004, 86–89.
J, Řezáčová M, Vokurková D, Östereicher J, Vilasová Z. Degradace Cdc25A fosfatasy v odpovědi na poškození buněk HL-60 ionizujícím zářením.
39. Proc Natl Acad Sci U S A. 1985; 82:790–4.
< D, Rotter V. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells. https://doi.org/10.1073/pnas.82.3.790>
<PubMed>
40. J Surg Oncol 1971; 3:73–77.
< D, Roseman JM, Miller E, Seltzer MH, Rosato FE. The effect of L-fucose on rat mammary tumor growth I. In vivo Studies. https://doi.org/10.1002/jso.2930030113>
41. Growth 1970; 34:379–384.
DE, Roseman JM, Seltzer MH, Miller FE, Rosato FE. Further observations of L-fucose as a specific inhibitor of rat mammary carcinoma in tissue culture.
42. Cancer Chemother Pharmacol 1999; 44: 59–64.
< M, Tomida A, Yun J, Cai B, Yoshikawa H, Taketani Y, Tsuruo T. Cellular sensitization to cisplatin and carboplatin with decreased removal of platinum- DNA adduct by glucose-regulated stress. https://doi.org/10.1007/s002800050945>
43. Cancer Res 2005; 65:7023–30.
< Z, Jiang W, McGinley JN, Thompson HJ. 2-Deoxyglucose as an energy restriction mimetic agent: Effects on mammary carcinogenesis and on mammary tumor cell growth in vitro. https://doi.org/10.1158/0008-5472.CAN-05-0453>