Acta Med. 2008, 51: 113-119

https://doi.org/10.14712/18059694.2017.12

Evaluation of the Antineoplastic Activity of L-rhamnose in vitro. A Comparison with 2-deoxyglucose

Pavel Tomšíka, Alena Stoklasováa, Stanislav Mičudab, Mohamed Nianga, Petr Šubac, Jiří Knížekd, Martina Řezáčováa

aCharles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Department of Biochemistry, Hradec Králové, Czech Republic
bCharles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Department of Pharmacology, Hradec Králové, Czech Republic
cCharles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Department of Neurosurgery, Hradec Králové, Czech Republic
dCharles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Department of Medical Biophysics, Hradec Králové, Czech Republic

Received May 1, 2008
Accepted June 1, 2008

References

1. Aft RL, Zhang FW, Gius D. Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death. Br J Cancer. 2002; 87:805–12. <https://doi.org/10.1038/sj.bjc.6600547> <PubMed>
2. Bache M, Pigorsch S, Dunst J, Wurl P, Meye A, Barte F, Schmidt H, Rath FW, Taubert H. Loss of G2/M arrest correlates with radiosensitization in two human sarcoma cell lines with mutant p53. Int J Cancer 2001; 96:110–117. <https://doi.org/10.1002/ijc.1002>
3. Becker DJ, Lowe JB. Fucose: biosynthesis and biological function in mammals. Glycobiology 2003; 13:41R-53R. <https://doi.org/10.1093/glycob/cwg054>
4. Bjarnason I, Macpherson A, Hollander D. Intestinal permeability: an overview. Gastroenterology 1995; 108:1566–81. <https://doi.org/10.1016/0016-5085(95)90708-4>
5. Cay O, Radnell M, Jeppsson B, Ahrn B, Bengmark S. Inhibitory effect of 2-deoxy- D-glucose on liver tumor growth in rats. Cancer Res 1992; 52:5794–6.
6. Cuatrecasas P, Segal S. Mammalian galactose dehydrogenase. II. Properties, substrate specificity, and developmental changes. J Biol Chem 1966; 241:5910–8.
7. Giraud MF, Naismith JH. The rhamnose pathway. Curr Opin Struct Biol 2000; 10:687–96. <https://doi.org/10.1016/S0959-440X(00)00145-7>
8. Ishihara H, Massaro DJ, Heath EC. The metabolism of L-fucose. 3. The enzymatic synthesis of beta-L-fucose 1–phosphate. J Biol Chem 1968; 243:1103–9.
9. Karczmar GS, Arbeit JM, Toy BJ, Speder A, Weiner MW. Selective depletion of tumor ATP by 2-deoxyglucose and insulin, detected by 31P magnetic resonance spectroscopy. Cancer Res 1992; 52:71–6.
10. Kern KA, Norton JA. Inhibition of established rat fibrosarcoma growth by the glucose antagonist 2-deoxy-D-glucose. Surgery 1987; 102(2):380–5.
11. Kim YJ, Varki A. Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj J 1997; 14:569–76. <https://doi.org/10.1023/A:1018580324971>
12. Kossowska B, Ferens-Sieczkowska M, Gancarz R, Passowicz-Muszyska E, Jankowska R. Fucosylation of serum glycoproteins in lung cancer patients. Clin Chem Lab Med 2005; 43:361–9. <https://doi.org/10.1515/CCLM.2005.066>
13. Malagon I, Onkenhout W, Klok M, van der Poel PF, Bovill JG, Hazekamp MG. Rhamnose and rhamnitol in dual sugar permeability tests. J Pediatr Gastroenterol Nutr 2006; 43:265–6. <https://doi.org/10.1097/01.mpg.0000226379.41365.62>
14. Malawista I, Davidson EA. Isolation and identification of rhamnose from rabbit skin. Nature 1961; 192:871–2. <https://doi.org/10.1038/192871a0>
15. Mareková M, Vávrová J, Vokurková D. Dose dependent biological effects of idarubicin in HL-60 cells: alterations of the cell-cycle and apoptosis. Acta Medica (Hradec Kralove) 2000; 43:69–73.
16. Martin A, Butters TD, Fleet GWJ. A highly cytotoxic L-rhamnose analogue of the antitumour agent spicamycin. Chem Commun 1998; 19:2119–2120. <https://doi.org/10.1039/a805878d>
17. Mattern J, Kaufmann M, Wayss K, Volm M: Studies on the Drug Sensitivity of Short Term Cultivated Tumour Cell Suspensions. „Human Tumours in Short Term Culture“ (red. Dendy PP), p. 301. London, New York, San Francisco, Academic Press 1976.
18. Mělka M. Průběh inkorporace směsi L-[U-14C] aminokyselin in vitro v závislosti na koncentraci buněk Ehrlichova ascitického karcinomu. Rigorózní práce. Přírodovědecká fakulta University Karlovy v Praze. Praha 1980.
19. Moley KH, Mueckler MM. Glucose transport and apoptosis. Apoptosis 2000; 5:99–105. <https://doi.org/10.1023/A:1009697908332>
20. Mons S, GWJ, An approach to the generation of simple analogues of the antitumour agent spicamycin. Org Biomol Chem 2003, 1: 3685–3691. <https://doi.org/10.1039/b307795k>
21. Mullen JL, Rosato FE, Allen TR, Miller EE, Roseman J, Rosato EF. Continuous intravenous fucose therapy in rat mammary cancer II. J Surg Oncol 1973; 5:6–9. <https://doi.org/10.1002/jso.2930050109>
22. Mller M, Buttgereit F, Dumdey R, Rapoport SM. Quantification of ATP-producing and consuming processes of Ehrlich ascites tumour cells. Eur J Biochem 1986; 161:701–5. <https://doi.org/10.1111/j.1432-1033.1986.tb10496.x>
23. Nejman MB, Gal D. Primenenije radioaktivnych izotopov v chimiceskoj kinetike. Moskva, Nauka 1970.
24. Rosato FE, Mullen JL, Rosato EF, Steiger E, Miller EE. Continuous intravenous fucose treatment of rat mammary tumor. J Surg Oncol 1972; 4:94–101. <https://doi.org/10.1002/jso.2930040204>
25. Roseman JM, Miller EE, Seltzer MH, Wolfe D, Rosato FE. The effect of L-fucose on rat mammary tumor growth II. In vitro studies. J Surg Oncol 1971; 3:79–88. <https://doi.org/10.1002/jso.2930030114>
26. Roszkowski W, Beuth J, Ko HL, Uhlenbruck G, Pulverer G. Blocking of lectinlike adhesion molecules on pulmonary cells inhibits lung sarcoma L-1 colonization in BALB/c-mice. Experientia. 1989; 45:584–8. <https://doi.org/10.1007/BF01990514>
27. Schafer, J., Bachtler, J., Engling, A., Little, J. B., Weber, K. J., Wenz, F.: Suppression of apoptosis and clonogenic survival in irradiated human lymphoblasts with different TP53 status. Radiat Res 2002; 158: 699–706. <https://doi.org/10.1667/0033-7587(2002)158[0699:SOAACS]2.0.CO;2>
28. Seltzer MH, Roseman JM, Wolfe DE, Tsou KC, Miller EE, Rosato FE. The effects of L-fucose on rat mammary tumor growth. Growth 1969; 33: 353–359.
29. Sols A, Crane RK. Substrate specificity of brain hexokinase. J Biol Chem 1954; 210:581–595.
30. Staňková J. Fucose-activated killer cells. I. Enhanced TNF-α mRNA accumulation and protein production. J Leukoc Biol 1992; 52: 188–196. <https://doi.org/10.1002/jlb.52.2.188>
31. Szumiel I, Kapiszewska M, John A, Gradska I, Kowalczyk D, Janik P. Caffeineinhibitable control of the radiation-induced G2 arrest in L5178Y-S cells deficient in non-homologous end-joining: Radiat. Environ. Biophys 2001; 40:137–143. <https://doi.org/10.1007/s004110100089>
32. Theron T, Binder A, Verheye-Dua F, Bohm L. The role of G2-block abrogation, DNA double–strand break repair and apoptosis in the radiosensitization of melanoma and squamous cell carcinoma cell lines by pentoxifylline. Int J Radiat Biol 2000; 76:1197–1208. <https://doi.org/10.1080/09553000050134438>
33. Tower DB. The effects of 2-deoxy-D-glucose on metabolism of slices of cerebral cortex incubated in vitro. J Neurochem 1958; 3: 185–205. <https://doi.org/10.1111/j.1471-4159.1958.tb12625.x>
34. Tymiak AA, Norman JA, Bolgar M, DiDonato GC, Lee MH, Parker WL, Lo LC, Berova N, Nakanishi K, Haber E. Physicochemical characterization of a ouabain isomer isolated from bovine hypothalamus. Proc Natl Acad Sci U.S.A. 1993; 90:8189–93. <https://doi.org/10.1073/pnas.90.17.8189> <PubMed>
35. Tzatsos A, Tsichlis PN. Energy Depletion Inhibits Phosphatidylinositol 3-Kinase/ Akt Signaling and Induces Apoptosis via AMP-activated Protein Kinase-dependent Phosphorylation of IRS-1 at Ser-794. J Biol Chem 2007; 282:18069–82. <https://doi.org/10.1074/jbc.M610101200>
36. Vávrová J, Mareková M, Vokurková D, Psutka J. Cell cycle alteration and response to low-dose-rate gamma radiation in leukemic cell lines. Physiol Res 2004; 53:335–342.
37. Vávrová J, Mareková M, Vokurková D, Szkanderová S, Psutka J. Caffeine induces a second wave of apoptosis after low dose-rate gamma radiation of HL-60 cells. Radiat Environ Biophys 2003; 42:193–199. <https://doi.org/10.1007/s00411-003-0209-4>
38. Vávrová J, Řezáčová M, Vokurková D, Östereicher J, Vilasová Z. Degradace Cdc25A fosfatasy v odpovědi na poškození buněk HL-60 ionizujícím zářením. Radiační Onkologie 2004, 86–89.
39. Wolf D, Rotter V. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells. Proc Natl Acad Sci U S A. 1985; 82:790–4. <https://doi.org/10.1073/pnas.82.3.790> <PubMed>
40. Wolfe D, Roseman JM, Miller E, Seltzer MH, Rosato FE. The effect of L-fucose on rat mammary tumor growth I. In vivo Studies. J Surg Oncol 1971; 3:73–77. <https://doi.org/10.1002/jso.2930030113>
41. Wolfe DE, Roseman JM, Seltzer MH, Miller FE, Rosato FE. Further observations of L-fucose as a specific inhibitor of rat mammary carcinoma in tissue culture. Growth 1970; 34:379–384.
42. Yamada M, Tomida A, Yun J, Cai B, Yoshikawa H, Taketani Y, Tsuruo T. Cellular sensitization to cisplatin and carboplatin with decreased removal of platinum- DNA adduct by glucose-regulated stress. Cancer Chemother Pharmacol 1999; 44: 59–64. <https://doi.org/10.1007/s002800050945>
43. Zhu Z, Jiang W, McGinley JN, Thompson HJ. 2-Deoxyglucose as an energy restriction mimetic agent: Effects on mammary carcinogenesis and on mammary tumor cell growth in vitro. Cancer Res 2005; 65:7023–30. <https://doi.org/10.1158/0008-5472.CAN-05-0453>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive