Acta Med. 2008, 51: 43-49
https://doi.org/10.14712/18059694.2017.7
Increased Uptake of Zinc in Malignant Cells is Associated with Enhanced Activation of MAPK Signalling and P53-Dependent Cell Injury
References
1. The Prostate 2002; 52:311–8.
< P, Li TL, Guan ZX, Franklin RB, Costello, LC. Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. https://doi.org/10.1002/pros.10128>
<PubMed>
2. Proceedings of the Society For Experimental Biology and Medicine 1997; 215:229–36.
< PJ, Telford WG. A reappraisal of the role of zinc in life and death decisions of cells. https://doi.org/10.3181/00379727-215-44132>
3. Biochemical and Biophysical Research Communications 2002; 296:923–8.
< H, Beyersmann, D. Intracellular zinc distribution and transport in C6 rat glioma cells. https://doi.org/10.1016/S0006-291X(02)02017-X>
4. Annual Review of Neuroscience 1998; 21:347–75.
< DW, Koh JY. Zinc and brain injury. https://doi.org/10.1146/annurev.neuro.21.1.347>
5. Biometals 2005; 18:243–53.
< B, Doring F, Fuchs D, Pfaffl MW, Daniel H. Effects of increased cellular zinc levels on gene and protein expression in HT-29 cells. https://doi.org/10.1007/s10534-005-1247-y>
6. J Nutr 2004; 134:57–62.
< B, Doring F, Pfaffl M, Daniel H. Identification of genes responsive to intracellular zinc depletion in the human colon adenocarcinoma cell line HT- 29. https://doi.org/10.1093/jn/134.1.57>
7. Apoptosis 2006; 11:1933–44.
< C, Creach K, Irintcheva V et al. Zinc induces ERK-dependent cell death through a specific Ras isoform. https://doi.org/10.1007/s10495-006-0089-6>
8. The Journal of biological chemistry 2002; 277:1837–44.
< YW, Ueda S, Ueno M, Yodoi J, Masutani H. Mechanism of p53-dependent apoptosis induced by 3-methylcholanthrene: involvement of p53 phosphorylation and p38 MAPK. https://doi.org/10.1074/jbc.M105033200>
9. Annual Review of Nutrition 2004; 24:151–72.
< JP, Cousins RJ. Mammalian zinc transporters. https://doi.org/10.1146/annurev.nutr.24.012003.132402>
10. Apoptosis 2005; 10:369–79.
< JJ, Fraker PJ. Zinc pyrithione induces apoptosis and increases expression of Bim. https://doi.org/10.1007/s10495-005-0811-9>
11. Cell 2000; 102:849–62.
< K, Arakawa H, Tanaka T et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. https://doi.org/10.1016/S0092-8674(00)00073-8>
12. Free Radical Biology & Medicine 2002; 32:431–45.
< M, Donnini A, Argentati K, Di Stasio G, Bartozzi B, Bernardini G. Reactive oxygen species modulate Zn(2+)-induced apoptosis in cancer cells. https://doi.org/10.1016/S0891-5849(01)00830-9>
13. Microbiol Mol Biol Rev 2004; 68:320–44.
< PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. https://doi.org/10.1128/MMBR.68.2.320-344.2004>
<PubMed>
14. Acta Medica (Hradec Kralove) 2006; 49:123–8.
< E, Cervinka M. Cytoskeletal changes in non-apoptotic cell death. https://doi.org/10.14712/18059694.2017.124>
15. Biofactors 2005; 23:107–20.
< E, Rudolf K, Cervinka M. Zinc induced apoptosis in HEP-2 cancer cells: the role of oxidative stress and mitochondria. https://doi.org/10.1002/biof.5520230206>
16. The EMBO journal 1998; 17: 2596–606.
< M, Nishitoh H, Fujii M et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. https://doi.org/10.1093/emboj/17.9.2596>
<PubMed>
17. Cell 1997; 91:325–34.
< SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. https://doi.org/10.1016/S0092-8674(00)80416-X>
18. The EMBO journal 2000; 19:6517–26.
< M, Adachi M, Nakahata A et al. p53-inducible Wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. https://doi.org/10.1093/emboj/19.23.6517>
<PubMed>