Acta Med. 2007, 50: 207-212
https://doi.org/10.14712/18059694.2017.84
Phenotype Analysis of Tumour-infiltrating Lymphocytes and Lymphocytes in Peripheral Blood in Patients with Renal Carcinoma
References
1. , A.L., Baliga, P., Woodward, J.E.: Differential effects of transferrin receptor blockade on cellular mechanisms involved in graft rejection. Transplant. Immunol., 1999; 7:131.
<https://doi.org/10.1016/S0966-3274(99)80032-X>
2. , A.L., Baliga, P., Woodward, J.E.: Transferrin receptor in T cell activation and transplantation. J. Leukocyte Biol., 1998; 64:19.
<https://doi.org/10.1002/jlb.64.1.19>
3. , R., Mor, C., Hazaz, B., Moroz, C.: Characterisation of T lymphocyte populations infiltrating primary breast cancer. Cancer Immunol. Immunother. 1989; 28:143–7.
<https://doi.org/10.1007/BF00199115>
<PubMed>
4. , M., Ittenson, A., Schierbaum, K.F., et al.: Pretreatment with interleukin-2 modulates peri-operative immuno-dysfunction in patients with renal cell carcinoma. Eur. Urol. 2002; 41:458–68.
<https://doi.org/10.1016/S0302-2838(02)00031-3>
5. , A.J.A., Parmiani, G.: Immunology and immunotherapy of human cancer: present concepts and clinical developments. Crit. Rev. Oncol. Hematol. 2000; 34:1–25.
<https://doi.org/10.1016/S1040-8428(99)00059-1>
6. , A., Inghirami, g., Knowels, D.M.: The kinetics and temporal expression of T cell activation-associated antigens CD15 (LeuM1), CD30 (Ki-1) EMA and CD11c (LeuM5) by benign activated T cells. Hematol. Pathol. 1992; 6:193.
7. , N.G., Sporn, J.R., Pasquale, D.R., et al.: Suppression of lymphokine-activated killer cell generation by tumor-infiltrating lymphocytes. Clin. Immunol. Immunopathol. 1991; 59:407–16.
<https://doi.org/10.1016/0090-1229(91)90036-A>
8. , D., Pašukoniené, V., Kazlauskaité, N., et al.: Predictive value of CD8highCD57+ lymphocyte subset in interferon therapy of patients with renal cell carcinoma. Anticancer Research 2002; 22:3679–84.
9. , B.J., Weeks, S.C., Heckford, S.E., et al.: Lack of IL-2 cytokine expression despite IL-2 messenger RNA transcription in tumor-infiltrating lymphocytes in primary human breast carcinoma: selective expression of early activation markers. J. Immunol. 1996; 156:3486.
10. , F., Bennedsgaard, K.M., von der Maase, H., et al.: Intratumoural and peripheral blood lymphocyte subsets in patients with metastatic renal cell carcinoma undergoing interleukin-2 based immunotherapy: association to objective response and survival. Br. J. Cancer 2002; 87:194–201.
<https://doi.org/10.1038/sj.bjc.6600437>
<PubMed>
11. , U., Gierschner, D., Welchner, T., Wetterauer, U.: Different expression of Fas and Fas ligand in tumor infiltrating and perihperal lymphocytes of patients with renal cell carcinomas. Anticancer Research 2003; 23:433–8.
12. , U., Grussenmeyer, T., Gierschner, D., et al.: Semiquantitative analysis of Th1 and Th2 cytokine expression in CD3+, CD4+, and CD8+ renal-cell-carcinoma-infiltrating lymphocytes. Cancer Immunol. Immunother. 1999; 48:204–8.
<https://doi.org/10.1007/s002620050566>
<PubMed>
13. , K., Morita, T., Augustus, L.B., et al.: Human renal cell carcinoma cells are able to activate natural killer cells. Int. J. Cancer 1992; 51:290.
<https://doi.org/10.1002/ijc.2910510219>
14. , T., Takahashi, H., Tobe, T., et al.: Effect of tumor-infiltrating lymphocyte subsets on prognosis and susceptibility to interferon therapy in patients with renal cell carcinoma. Urol. Int. 2002; 69:51–56.
<https://doi.org/10.1159/000064361>
15. , A.S., Tso, C.L., Shimabukuro, T., et al.: Autologous tumor-specific cytotoxicity of tumor-infiltrating lymphocytes derived from human renal cell carcinoma. J. Immunother. 1991; 10:347–54.
<https://doi.org/10.1097/00002371-199110000-00006>
16. , D., Skorupski, W., Kwias, Z., Nowak, J.: Flow cytometric analysis of tumour-infiltrating lymphocytes in patients with renal cell carcinoma. Br. J. Urol. 1997; 80:543–7.
<https://doi.org/10.1046/j.1464-410X.1997.00408.x>
17. , M., Leonard, W.J., Depper, J.M., Greene, W.C.: Sequential expression of genes involved in human T lymphocyte growth and differentiation. J. Exp. Med. 1985; 161:1593–8.
<https://doi.org/10.1084/jem.161.6.1593>
<PubMed>
18. , G., Dalla Mora, L., Bresciano, E., et al.: Functional characteristics of cord blood T lymphocytes after lectin and anti-CD3 stimulation. Differences in the way T cells express activation molecules and proliferate. Int. J. Clin. Res. 1996; 26:255.
<https://doi.org/10.1007/BF02602959>
19. , K., Kono, K., Takayama, T., et al.: Inhibition of lymphocyte proliferative responses by renal cell carcinoma extract. Transplant. Proc. 1997; 29:839.
<https://doi.org/10.1016/S0041-1345(96)00157-1>
20. , C.L., Lara, P.N.: Renal cell carcinoma: current status and future directions. Crit. Rev. Oncol. Hematol. 2003; 45:177–190.
<https://doi.org/10.1016/S1040-8428(02)00076-8>
21. , D., Kooi, S., Rodriguez-Villanueva, J., Platsoucas, C.D.: Characterization of fresh (uncultured) tumour-infiltrating lymphocytes (TIL) and TIL-derivied T cell lines from patients with renal cell carcinoma. Clin. Exp. Immunol. 1994; 97:321–7.
<https://doi.org/10.1111/j.1365-2249.1994.tb06088.x>
<PubMed>
22. , M.G., van der Meer, J.W.M., Sutmuller, R.P., et al.: From the Th1/Th2 paradigm towards a toll-like receptor/T-helper bias. Antimicrob. Agents Chemother. 2005; 49(10):3991–6.
<https://doi.org/10.1128/AAC.49.10.3991-3996.2005>
<PubMed>
23. , M.C., Nagorsen, D., Wang, E., et al.: Mechanism of immune response during immunotherapy. Yonsei Med. J. 2004; 45(Suppl.):15–17.
<https://doi.org/10.3349/ymj.2004.45.Suppl.15>
24. , J.C., Alpers, J.D., Nowell, P.C., Hoover, R.G.: Sequential expression of protooncogenes during lecitin-stimulated mitogenesis of normal human lymphocytes. Proc. Natl. Acad. Sci. USA 1986; 83:3982–6.
<https://doi.org/10.1073/pnas.83.11.3982>
<PubMed>
25. , M.A., De Sanctis, J.B., Blasini, A.M., et al.: Human IFN-gamma upregulates IL-2 receptors in mitogen-activated T lymphocytes. Immunol. 1990; 69:554.
26. , A.D., Ravaggi, A., Bellone, S., et al.: Tumor-infiltrating lymphocytes contain higher numbers of type 1 cytokine expressors and DR+ T cells compared with lymphocytes from tumor draining lymph nodes and peripheral blood in patients with cancer of the uterine cervix. Gynecol. Oncol. 2001; 81:424–32.
<https://doi.org/10.1006/gyno.2001.6200>
27. , M., Ye, H., Frischer, Z., et al.: Increased expression of activation markers in renal cell carcinoma infiltrating lymphocytes. J. Urol. 2002; 168:2216–19.
<https://doi.org/10.1016/S0022-5347(05)64358-3>
28. , D.D., Terashima, Y., Peoples, G.E., et al.: CD4+ T cell clones isolated from human renal cell carcinoma possess the functional characteristics of Th2 helper cells. Cellular Immunol. 1993; 150:114–23.
<https://doi.org/10.1006/cimm.1993.1183>
29. , L.E., van Gool, S.W., van Poppel, H., et al.: Identification of an enriched CD4+ CD8alpha++ CD8beta+ T-cell subset among tumor-infiltrating lymphocytes in human renal cell carcinoma. Int. J. Cancer 1997; 71:178.
<https://doi.org/10.1002/(SICI)1097-0215(19970410)71:2<178::AID-IJC9>3.0.CO;2-Y>
30. , L.E., van Gool, S.W., van Poppel, H., et al.: Phenotype, cytokine production and cytolytic capacity of fresh (uncultured) tumour-infiltrating lymphocytes in human renal cell carcinoma. Clin. Exp. Immunol. 1997; 109:501–9.
<https://doi.org/10.1046/j.1365-2249.1997.4771375.x>
<PubMed>
31. , T.L., Herberman, R.B.: The role of natural killer cells in immune surveillance of cancer. Curr. Opinion Immunol. 1995; 7:704–10.
<https://doi.org/10.1016/0952-7915(95)80080-8>
32. , P., Mallon, E.A., George, W.D., Campbell, A.M.: Flow cytometric analysis of tumour infiltrating lymphocytes in breast cancer. Br. J. Cancer 1990; 62:971–5.
<https://doi.org/10.1038/bjc.1990.419>
<PubMed>
33. , J., Dworacki, G., Kruk-Zagajewska, A., et al.: Assessment of immunophenotype of potentially cytotoxic tumor infiltrating cells in laryngeal carcinoma. Arch. Immunol. Ther. Exp. 1993; 41:57–62.


