Acta Med. 2007, 50: 93-99

https://doi.org/10.14712/18059694.2017.62

The Inflammatory Response in Cardiac Surgery. An Up-to-date Overview with the Emphasis on the Role of Heat Shock Proteins (HSPs) 60 and 70

Pavel Kuneša, Vladimír Lonskýa, Jiří Manďáka, Miroslav Brtkoa, Martina Koláčkováb, Ctirad Andrýsb, Manuela Kudlováb, Jan Krejsekb

aCharles University in Prague, Faculty of Medicine and University Hospital in Hradec Králové, Department of Cardiac Surgery, Hradec Králové, Czech Republic
bCharles University in Prague, Faculty of Medicine and University Hospital in Hradec Králové, Institute of Clinical Immunology and Allergology, Hradec Králové, Czech Republic

Received April 1, 2007
Accepted May 1, 2007

References

1. Anselmi A, Abbate A, Girola F et al. Myocardial ischemia, stunning, inflammation, and apoptosis during cardiac surgery: a review of evidence. Eur J Cardio-Thorac Surg 2004; 25:304–11. <https://doi.org/10.1016/j.ejcts.2003.12.003>
2. Bas S, Gauthier BR, Spenato U et al. CD14 is an acute-phase protein. J Immunol 2004; 172:4470–9. <https://doi.org/10.4049/jimmunol.172.7.4470>
3. Bethke K, Staib F, Distler M et al. Different efficacy of heat shock proteins (HSP) to activate human monocytes and dendritic cells: superiority of HSP60. J Immunol 2002; 169:6141–8. <https://doi.org/10.4049/jimmunol.169.11.6141>
4. Beutler B, Hoebe K, Georgel P et al. Genetic analysis of innate immunity: TIR adapter proteins in innate and adaptive immune responses. Microbes Infection 2004; 6:1374–81. <https://doi.org/10.1016/j.micinf.2004.08.017>
5. Boyd JH, Mathur S, Wang Y, Bateman RM, Walley KR. Toll-like receptor stimulation in cardiomyocytes decreases contractility and initiates an NF-κB dependent inflammatory response. Cardiovasc Res 2006; 72:384–93. <https://doi.org/10.1016/j.cardiores.2006.09.011>
6. Chen W, Syldath U, Bellmann K et al. Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 1999; 162:3212–19.
7. Chow JC, Young DW, Golenbock DT et al. Toll-like receptor 4 mediates lipopolysaccharide- induced signal transduction. J Biol Chem 1999; 274:10689–92. <https://doi.org/10.1074/jbc.274.16.10689>
8. Cohen-Sfady M, Nussbaum G, Pevsner-Fischer M et al. Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. J Immunol 2005; 175:3594–602. <https://doi.org/10.4049/jimmunol.175.6.3594>
9. Dybdahl B, Slordahl SA, Waage A, Kierulf P, Espevik T, Sundan A. Myocardial ischemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart 2005; 91:299–304. <https://doi.org/10.1136/hrt.2003.028092> <PubMed>
10. Dybdahl B, Wahba A, Haaverstad R et al. On-pump versus off-pump coronary artery bypass grafting: more heat shock protein 70 is released after on-pump surgery. Eur J Cardio-Thorac Surg 2004; 25:985–92. <https://doi.org/10.1016/j.ejcts.2004.03.002>
11. Fujiyoshi N, Feketova E, Lu Q, Xu D-Z, Haskó G, Deitch EA. Amiloride moderates increased gut permeability and diminishes mesenteric lymph-mediated priming of neutrophils in trauma/hemorrhage shock. Surgery 2006; 140:810–17. <https://doi.org/10.1016/j.surg.2006.03.003>
12. Gordon S. Pattern recognition receptors. Doubling up for the innate immune response. Cell 2002; 111:927–30. <https://doi.org/10.1016/S0092-8674(02)01201-1>
13. Habich C, Kempe K, van der Zee R et al. Heat shock protein 60: specific binding of lipopolysaccharide. J Immunol 2005; 174:1298–1305. <https://doi.org/10.4049/jimmunol.174.3.1298>
14. Hackett CJ. Innate immune activation as a broad-spectrum biodefense strategy. Prospects and research challenges. J Allerg Clin Immunol 2003; 112:686–94. <https://doi.org/10.1016/S0091-6749(03)02025-6> <PubMed>
15. Johnson GB, Brunn GJ, Platt JL. An endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through Toll-like receptor 4. J Immunol 2004; 172:20–24. <https://doi.org/10.4049/jimmunol.172.1.20>
16. Kawana K-i, Miyamoto Y, Tanonaka K et al. Cytoprotective mechanism of heat shock protein 70 against hypoxia/reoxygenation injury. J Mol Cell Cardiol 2000; 32:2229–37. <https://doi.org/10.1006/jmcc.2000.1250>
17. Li M, Carpio DF, Zheng Y et al. An essential role of the NF-κB/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J Immunol 2001; 166:7128–35. <https://doi.org/10.4049/jimmunol.166.12.7128>
18. Lien E, Means TK, Heine H et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest 2000; 105:497–504. <https://doi.org/10.1172/JCI8541> <PubMed>
19. Majetschak M, Krehmeier U, Ostroverkh L, Blömeke B, Schäfer M. Alterations in leukocyte function following surgical trauma: differentiation of distinct reaction types and association with tumor necrosis factor gene polymorphisms. Clin Diag Lab Immunol 2005; 12:296–303.
20. Nylandsted J, Gyrd-Hansen M, Danielewicz A et al. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 2004; 200:425–35. <https://doi.org/10.1084/jem.20040531> <PubMed>
21. Osuchowski MF, Welch K, Siddiqui J, Remick DG. Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. J Immunol 2006; 177:1967–74. <https://doi.org/10.4049/jimmunol.177.3.1967>
22. Ozinsky A, Underhill DM, Fontenot JD et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci USA 2000; 97:13766–71. <https://doi.org/10.1073/pnas.250476497> <PubMed>
23. Paparella D, Yau TM, Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J Cardio-Thorac Surg 2002; 21:232–44. <https://doi.org/10.1016/S1010-7940(01)01099-5>
24. Pfister G, Strohl CM, Perschinka H, et al. Detection of HSP60 on the membrane surface of stressed human endothelial cells bz atomic force and confocal microscopy. J Cell Sci 2005; 118:1587–94. <https://doi.org/10.1242/jcs.02292>
25. Pockley AG. Heat shock proteins as regulators of the immune response. Lancet 2003; 362:469–76. <https://doi.org/10.1016/S0140-6736(03)14075-5>
26. Quintana FJ, Cohen IR. Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J Immunol 2005; 175:2777–82. <https://doi.org/10.4049/jimmunol.175.5.2777>
27. Robert J. Evolution of heat shock protein and immunity. Develop Compar Immunol 2003; 27:449–64. <https://doi.org/10.1016/S0145-305X(02)00160-X>
28. Stewart GR, Young DB. Heat shock proteins and the host-pathogen interaction during bacterial infection. Curr Opin Immunol 2004; 16:506–10. <https://doi.org/10.1016/j.coi.2004.05.007>
29. Thériault JR, Mambula SS, Sawamura T, Stevenson MA, Calderwood SK. Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett 2005; 579:1951–60. <https://doi.org/10.1016/j.febslet.2005.02.046>
30. Vabulas RM, Ahmad-Nejad P, da Costa C et al. Endocytosed HSP60s use Tolllike receptor 2 (TLR2) and TLR4 to activate the Toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 2001; 276:31332–9. <https://doi.org/10.1074/jbc.M103217200>
31. Vogt S, Portig I, Kusch B, et al. Detection of anti-hsp 70 immunoglobulin G antibodies indicates better outcome in coronary artery bypass grafting patients suffering from severe preoperative angina. Ann Thorac Surg 2004; 78:883–9. <https://doi.org/10.1016/j.athoracsur.2004.03.082>
32. Warger T, Hilf N, Rechtsteiner G et al. Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. J Biol Chem 2006; 281:22545–53. <https://doi.org/10.1074/jbc.M502900200>
33. Weigand MA, Hörner C, Bardenheuer HJ, Bouchon A. The systemic inflammatory response syndrome. Best Pract Res Clin Anaesth 2004; 18:455–75. <https://doi.org/10.1016/j.bpa.2003.12.005>
34. Zahler S, Massoudy P, Hartl H et al. Acute cardiac inflammatory responses to postischemic reperfusion during cardiopulmonary bypass. Cardiovasc Res 1999; 41:722–30. <https://doi.org/10.1016/S0008-6363(98)00229-6>
35. Zanin-Zhorov A, Tal G, Shivtiel S et al. Heat shock protein 60 activates cytokineassociated negative regulator suppressor of cytokine signaling 3 in T cells: effects on signaling, chemotaxis, and inflammation. J Immunol 2005; 175:276–85. <https://doi.org/10.4049/jimmunol.175.1.276>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive