Acta Med. 2007, 50: 93-99
https://doi.org/10.14712/18059694.2017.62
The Inflammatory Response in Cardiac Surgery. An Up-to-date Overview with the Emphasis on the Role of Heat Shock Proteins (HSPs) 60 and 70
References
1. A, Abbate A, Girola F et al. Myocardial ischemia, stunning, inflammation, and apoptosis during cardiac surgery: a review of evidence. Eur J Cardio-Thorac Surg 2004; 25:304–11.
<https://doi.org/10.1016/j.ejcts.2003.12.003>
2. S, Gauthier BR, Spenato U et al. CD14 is an acute-phase protein. J Immunol 2004; 172:4470–9.
<https://doi.org/10.4049/jimmunol.172.7.4470>
3. K, Staib F, Distler M et al. Different efficacy of heat shock proteins (HSP) to activate human monocytes and dendritic cells: superiority of HSP60. J Immunol 2002; 169:6141–8.
<https://doi.org/10.4049/jimmunol.169.11.6141>
4. B, Hoebe K, Georgel P et al. Genetic analysis of innate immunity: TIR adapter proteins in innate and adaptive immune responses. Microbes Infection 2004; 6:1374–81.
<https://doi.org/10.1016/j.micinf.2004.08.017>
5. JH, Mathur S, Wang Y, Bateman RM, Walley KR. Toll-like receptor stimulation in cardiomyocytes decreases contractility and initiates an NF-κB dependent inflammatory response. Cardiovasc Res 2006; 72:384–93.
<https://doi.org/10.1016/j.cardiores.2006.09.011>
6. W, Syldath U, Bellmann K et al. Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 1999; 162:3212–19.
7. JC, Young DW, Golenbock DT et al. Toll-like receptor 4 mediates lipopolysaccharide- induced signal transduction. J Biol Chem 1999; 274:10689–92.
<https://doi.org/10.1074/jbc.274.16.10689>
8. M, Nussbaum G, Pevsner-Fischer M et al. Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. J Immunol 2005; 175:3594–602.
<https://doi.org/10.4049/jimmunol.175.6.3594>
9. B, Slordahl SA, Waage A, Kierulf P, Espevik T, Sundan A. Myocardial ischemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart 2005; 91:299–304.
<https://doi.org/10.1136/hrt.2003.028092>
<PubMed>
10. B, Wahba A, Haaverstad R et al. On-pump versus off-pump coronary artery bypass grafting: more heat shock protein 70 is released after on-pump surgery. Eur J Cardio-Thorac Surg 2004; 25:985–92.
<https://doi.org/10.1016/j.ejcts.2004.03.002>
11. N, Feketova E, Lu Q, Xu D-Z, Haskó G, Deitch EA. Amiloride moderates increased gut permeability and diminishes mesenteric lymph-mediated priming of neutrophils in trauma/hemorrhage shock. Surgery 2006; 140:810–17.
<https://doi.org/10.1016/j.surg.2006.03.003>
12. S. Pattern recognition receptors. Doubling up for the innate immune response. Cell 2002; 111:927–30.
<https://doi.org/10.1016/S0092-8674(02)01201-1>
13. C, Kempe K, van der Zee R et al. Heat shock protein 60: specific binding of lipopolysaccharide. J Immunol 2005; 174:1298–1305.
<https://doi.org/10.4049/jimmunol.174.3.1298>
14. CJ. Innate immune activation as a broad-spectrum biodefense strategy. Prospects and research challenges. J Allerg Clin Immunol 2003; 112:686–94.
<https://doi.org/10.1016/S0091-6749(03)02025-6>
<PubMed>
15. GB, Brunn GJ, Platt JL. An endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through Toll-like receptor 4. J Immunol 2004; 172:20–24.
<https://doi.org/10.4049/jimmunol.172.1.20>
16. K-i, Miyamoto Y, Tanonaka K et al. Cytoprotective mechanism of heat shock protein 70 against hypoxia/reoxygenation injury. J Mol Cell Cardiol 2000; 32:2229–37.
<https://doi.org/10.1006/jmcc.2000.1250>
17. M, Carpio DF, Zheng Y et al. An essential role of the NF-κB/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J Immunol 2001; 166:7128–35.
<https://doi.org/10.4049/jimmunol.166.12.7128>
18. E, Means TK, Heine H et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest 2000; 105:497–504.
<https://doi.org/10.1172/JCI8541>
<PubMed>
19. M, Krehmeier U, Ostroverkh L, Blömeke B, Schäfer M. Alterations in leukocyte function following surgical trauma: differentiation of distinct reaction types and association with tumor necrosis factor gene polymorphisms. Clin Diag Lab Immunol 2005; 12:296–303.
20. J, Gyrd-Hansen M, Danielewicz A et al. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 2004; 200:425–35.
<https://doi.org/10.1084/jem.20040531>
<PubMed>
21. MF, Welch K, Siddiqui J, Remick DG. Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. J Immunol 2006; 177:1967–74.
<https://doi.org/10.4049/jimmunol.177.3.1967>
22. A, Underhill DM, Fontenot JD et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci USA 2000; 97:13766–71.
<https://doi.org/10.1073/pnas.250476497>
<PubMed>
23. D, Yau TM, Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J Cardio-Thorac Surg 2002; 21:232–44.
<https://doi.org/10.1016/S1010-7940(01)01099-5>
24. G, Strohl CM, Perschinka H, et al. Detection of HSP60 on the membrane surface of stressed human endothelial cells bz atomic force and confocal microscopy. J Cell Sci 2005; 118:1587–94.
<https://doi.org/10.1242/jcs.02292>
25. AG. Heat shock proteins as regulators of the immune response. Lancet 2003; 362:469–76.
<https://doi.org/10.1016/S0140-6736(03)14075-5>
26. FJ, Cohen IR. Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J Immunol 2005; 175:2777–82.
<https://doi.org/10.4049/jimmunol.175.5.2777>
27. J. Evolution of heat shock protein and immunity. Develop Compar Immunol 2003; 27:449–64.
<https://doi.org/10.1016/S0145-305X(02)00160-X>
28. GR, Young DB. Heat shock proteins and the host-pathogen interaction during bacterial infection. Curr Opin Immunol 2004; 16:506–10.
<https://doi.org/10.1016/j.coi.2004.05.007>
29. JR, Mambula SS, Sawamura T, Stevenson MA, Calderwood SK. Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett 2005; 579:1951–60.
<https://doi.org/10.1016/j.febslet.2005.02.046>
30. RM, Ahmad-Nejad P, da Costa C et al. Endocytosed HSP60s use Tolllike receptor 2 (TLR2) and TLR4 to activate the Toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 2001; 276:31332–9.
<https://doi.org/10.1074/jbc.M103217200>
31. S, Portig I, Kusch B, et al. Detection of anti-hsp 70 immunoglobulin G antibodies indicates better outcome in coronary artery bypass grafting patients suffering from severe preoperative angina. Ann Thorac Surg 2004; 78:883–9.
<https://doi.org/10.1016/j.athoracsur.2004.03.082>
32. T, Hilf N, Rechtsteiner G et al. Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. J Biol Chem 2006; 281:22545–53.
<https://doi.org/10.1074/jbc.M502900200>
33. MA, Hörner C, Bardenheuer HJ, Bouchon A. The systemic inflammatory response syndrome. Best Pract Res Clin Anaesth 2004; 18:455–75.
<https://doi.org/10.1016/j.bpa.2003.12.005>
34. S, Massoudy P, Hartl H et al. Acute cardiac inflammatory responses to postischemic reperfusion during cardiopulmonary bypass. Cardiovasc Res 1999; 41:722–30.
<https://doi.org/10.1016/S0008-6363(98)00229-6>
35. A, Tal G, Shivtiel S et al. Heat shock protein 60 activates cytokineassociated negative regulator suppressor of cytokine signaling 3 in T cells: effects on signaling, chemotaxis, and inflammation. J Immunol 2005; 175:276–85.
<https://doi.org/10.4049/jimmunol.175.1.276>


