Acta Med. 2006, 49: 113-118

https://doi.org/10.14712/18059694.2017.122

Comparison of Effects of Different Antidotes on Tabun-Induced Cognitive Impairment in Rats Using Water Maze

Gabriela Kunešová, Jiří Kassa

University of Defence, Faculty of Military Health Sciences, Department of Toxicology, Hradec Králové, Czech Republic

Received November 1, 2005
Accepted May 1, 2006

References

1. Abou-Donia MB, Abdel-Rahman A, Goldstein LB, Dechkovskaia AM, Shah DU, Bullman SL, Khan WA. Sensorimotor deficits and increased brain nicotinic acetylcholine receptors folloeg exposure to chlorpyrifos and/or nice in rats. Org Tox Mech 2003; 77:452–8.
2. Afifi AA, Azen SP. Statistical analysis and computer oriented approach. 2nd ed. Academic Press, New York, 1979;442–5.
3. Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1989; 217:408–17. <https://doi.org/10.1126/science.7046051>
4. Boccia MM, Blake MG, Acosta GB, Baratti CM. Atropine, an anticholinergic drug, impairs memory retrieval of a high consolidated avoidance response in mice. Neurosci Lett 2003; 345:97–100. <https://doi.org/10.1016/S0304-3940(03)00493-2>
5. Brown MA, Kelley AB. Review of health consequences from high-, intermediateand low-level exposure to organophosphorus nerve agents. J Appl Toxicol 1998; 18:393–408. <https://doi.org/10.1002/(SICI)1099-1263(199811/12)18:6<393::AID-JAT528>3.0.CO;2-0>
6. Bureš J, Burešová O, Huston J (eds). Techniques and Basic Experiments for the Study of Brain and Behavior, 1st edn. Elsevier: Amsterdam, 1979; 147–50.
7. Cabal J, Kuča K, Kassa J. Specification of the structure of oximes able to reactivate tabun-inhibited acetylcholinesterase. Pharmacol Toxicol 2004; 95:81–6. <https://doi.org/10.1111/j.1742-7843.2004.950207.x>
8. Day LB, Schallert T. Anticholinergic effects on acquisition of place learning in the Morris water task: spatial mapping deficit or inability to inhibit nonplace strategies? Behav Neurosci 1996; 110:998–1005. <https://doi.org/10.1037/0735-7044.110.5.998>
9. Frick KM, Baxter MG, Markowska AL, Olton DS, Price DL: Age-related spatial reference and working memory deficits assessed in the water maze. Neurobiol Aging 1995, 16:149–60. <https://doi.org/10.1016/0197-4580(94)00155-3>
10. Hasselmo M. Neuromodulation: Acetylcholine and memory consolidation. Trends Cognitive Sci 1999; 3:351–9. <https://doi.org/10.1016/S1364-6613(99)01365-0>
11. Jokanovic M, Maksimovic M, Kilibarda V, Jovanovic D, Savic D: Oxime-induced reactivation of acetylcholiesterase inhibited by phosphoramidates. Toxicol Lett 1996, 85: 35. <https://doi.org/10.1016/0378-4274(96)03634-X>
12. Joseph JA. The putative role of free radicals in the loss of neuronal functioning in senescence. Integ Physiol Behav Sci 1992; 27:216–27. <https://doi.org/10.1007/BF02690894>
13. Kassa J, Bajgar J: Therapeutic efficacy of obidoxime or HI-6 with atropine against intoxication with some nerve agents in mice. Acta Med (Hradec Kralove) 1996, 39: 27–30.
14. Kassa J, Fusek J: The influence of oxime selection on the efficacy of antidotal treatment of soman-poisoned rats. Acta Med (Hradec Kralove) 2002, 45(1):19–27.
15. Kassa J, Koupilová M, Vachek J. The influence of low-level sarin inhalation exposure on spatial memory in rats. Pharmacol Biochem Behav 2001; 70:175–9. <https://doi.org/10.1016/S0091-3057(01)00592-5>
16. Kassa J, Krejcova G, Vachek J. The impairment of spatial memory following lowlevel sarin inhalation exposure and antidotal treatment in rats. Acta Medica (Hradec Kralove) 2002; 45 (4):149–153.
17. Kassa J, Vachek J: A comparison of the efficacy of pyridostigmine alone and the combination of pyridostigmine with anticholinergic drugs as pharmacological pretreatment of tabun-poisoned rats and mice. Toxicology 2002; 177 (2–3): 179–85. <https://doi.org/10.1016/S0300-483X(02)00219-6>
18. Krejcova G and J Kassa. Anticholinergic drugs – functional antidotes for the treatment of tabun intoxication. Acta Med (Hradec Kralove) 2004; 47:13–18.
19. Luine VN, Richards ST, Wu VY, Beck KD. Estradiol enhances learning and memory in a spatial memory task and effects level of monoaminergic neurotransmitters. Horm Behav 1998; 34:149–62. <https://doi.org/10.1006/hbeh.1998.1473>
20. Marrs TC. Organophosphate poisoning. Pharmacol Ther 1993; 58:51–66. <https://doi.org/10.1016/0163-7258(93)90066-M>
21. McDonald RJ, White NM. Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocampus. Behav Neurol Biol 1994; 61:260–70. <https://doi.org/10.1016/S0163-1047(05)80009-3>
22. McLeod CG, Singer W, Harrington DG. Acute neuropathology in soman poisoned rats. Fundam Appl Toxicol 1984; 5:53–8.
23. Morris RGM. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984; 11:47–60. <https://doi.org/10.1016/0165-0270(84)90007-4>
24. Myhrer T. Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioural tasks. Brain Res Rev 2003; 41:268–87. <https://doi.org/10.1016/S0165-0173(02)00268-0>
25. Oliviera MGM, Bueno OFA, Pomarico AC, Gugliano EB. Strategies used by hippocampal- and caudate-putamen-lesioned rats in a learning task. Neurobiol Learn Memory 1997; 68:32–41. <https://doi.org/10.1006/nlme.1996.3761>
26. Petras JM. Soman neurotoxicity. Fundam Appl Toxicol 1983; 1:73–83.
27. Petras JM. Neurology and neuropathology of soman-induced brain injury: an overview. J Exp Anal Behav 1994; 61:319–29. <https://doi.org/10.1901/jeab.1994.61-319> <PubMed>
28. Raveh L, Brandeis R, Gilat E, Cohen G, Alkalay D, Rabinovitz I, Sonego HWeissman BA. Anticholinergic and antiglutamatergic agents protect against soman–induced brain damage and cognitive dysfunction. Toxicol Sci 2003, 75:108–16. <https://doi.org/10.1093/toxsci/kfg166>
29. Robinson L, D Harbaran, G Riedel. Visual acuity in the water maze: sensitivity to muscarinic receptor blockade in rats and mice. Behav Brain Res 2004; 151: 277–286. <https://doi.org/10.1016/j.bbr.2003.09.001>
30. Rogers JL, Kesner RP. Cholinergic modulation of the hippocampus during encoding and retrieval. Neurobiol Learning Memory 2003; 80:332–42. <https://doi.org/10.1016/S1074-7427(03)00063-7>
31. Sánchez-Amate MC, Flores P, Sánchez-Santed F. Effects of chlorpyrifos in the plus-maze model of anxiety. Behav Pharmacol 2001; 12:285–92. <https://doi.org/10.1097/00008877-200107000-00007>
32. Shukitt-Hale B, McEwen JJ, Szprengiel A, Joseph JA. Effect of age on the radial arm water maze – test of spatial learning and memory. Neurobiol Aging 2004; 25:223–29. <https://doi.org/10.1016/S0197-4580(03)00041-1>
33. Shih TM, McDonough JH. Efficacy of biperiden and atropine as anticonvulsant treatment for organophosphorus nerve agent intoxication. Arch Toxicol 2000, 74:165–72. <https://doi.org/10.1007/s002040050670>
34. Taylor P. Anticholinesterase agents. In: Hardman JG, Limbird LE, editors. The Pharmacological basis of therapeutics, 9th ed. New York: McGraw Hill, 1996, New York, pp. 161–76.
35. Tonduli LS, Testylier G, Masqueliez C, Lallement G, Monmaur P. Effects of huperzine used as pre-treatment against soman-induced seizures. Neurotoxicology 2001; 22 (1):29–37. <https://doi.org/10.1016/S0161-813X(00)00015-2>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive