Acta Med. 2006, 49: 79-85

https://doi.org/10.14712/18059694.2017.115

Stem Cell Therapy for Demyelinating Disorders

Jan Pazour, Jaroslav Mokrý

Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Králové, Department of Histology and Embryology, Hradec Králové, Czech Republic

Received September 1, 2005
Accepted March 1, 2006

References

1. Ader M, Schachner M, Bartsch U. Integration and differentiation of neural stem cells after transplantation into the dysmyelinated central nervous system of adult mice. Eur J Neurosci 2004; 20:1205–10. <https://doi.org/10.1111/j.1460-9568.2004.03577.x>
2. Akiyama Y, Radtke C, Honmou O, Kocsis JD. et al. Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 2002; 39:229–36. <https://doi.org/10.1002/glia.10102> <PubMed>
3. Aloisi F. Growth factors. Neurosci 2003; 24:291–4.
4. Barres BA, Schmid R, Sendnter M, Raff MC. Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 1994; 118:371–5.
5. Ben-Hur T.,Rogister B, Murray K, Rougon G, Dubois-Dalcq M. Growth and fate of PSA NCAM+ precursors of the postnatal brain. J Neurosci 1998; 18:5777–88. <https://doi.org/10.1523/JNEUROSCI.18-15-05777.1998> <PubMed>
6. Ben-Hur T, Einstein O, Mizrachi-Kol R.et al. Stem cell therapy for myelin diseases. Current Drug Targets 2005; 6:3–19. <https://doi.org/10.2174/1389450053345000>
7. Blakemore WF, Crang AJ. The use of cultured autologous Schwann cells to remyelinate areas of persistent demyelination in the central nervous system. J Neurol Sci 1985; 70:207–23. <https://doi.org/10.1016/0022-510X(85)90088-7>
8. Blakemore WF, Gilson JM, Crang AJ. Transplanted glial cells migrate over a greater distance and remyelinate demyelinated lesions more rapidly than endogenous remyelinating cells. J Neurosci Res 2000; 61:288–94. <https://doi.org/10.1002/1097-4547(20000801)61:3<288::AID-JNR6>3.0.CO;2-#>
9. Bruck W, Schmied M, Suchanek G. Oligodendrocytes in the early course of multiple sclerosis. Ann Neurol 1994; 35:65–73. <https://doi.org/10.1002/ana.410350111>
10. Brustle O, Jones KN, Learish RD.et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 1999; 285:754–6.
11. Butzkneven H, Zhang JG,Soilu-Hanninen M. et al. LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival. Nat Med 2002; 8:613–9. <https://doi.org/10.1038/nm0602-613>
12. Calza L, Fernandez M, Giuliani A, Aloe L, Giardino L. Proliferation and phenotype regulation in the subventricular zone during experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 1998; 95:3209–14. <https://doi.org/10.1073/pnas.95.6.3209> <PubMed>
13. Cannela B, Hoban CJ, Gao et al. The neuregulin, glial growth factor-2, diminishes autoimmune demyelination and enhances remyelination in a chronic relapsing model for multiple sclerosis. Proc Natl Acad Sci USA 1998; 95:10100–105. <https://doi.org/10.1073/pnas.95.17.10100> <PubMed>
14. Crang AJ, Gilson J, Blakemore WF. The demonstration by transplantation of very restricted remyelinating potential of post-mitotic oligodendrocytes. J Neurocytol 1998; 27:541–53. <https://doi.org/10.1023/A:1006960032023>
15. Di Bello IC, Dawson MR, Levine JM, Reynolds R. Generation of oligodendroglial progenitors in acute inflammatory demyelinating lesions of the rat brain stem is associated with demyelination rather than inflammation. J Neurocytol 1999; 28:365–81. <https://doi.org/10.1023/A:1007069815302>
16. Frank JA, Richert N, Lewis B. et al. A pilot study of recombinant Insuline- like growth factor-I in seven multiple sclerosis patiens. Mult Scler 2002; 8:24–9.
17. Gage FH, Kempermann G, Plamer TD, Peterson DA, Ray J. Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 1998; 36:249–66. <https://doi.org/10.1002/(SICI)1097-4695(199808)36:2<249::AID-NEU11>3.0.CO;2-9>
18. Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, Kessler JA. Bone morphogenic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 1996; 17:595–606. <https://doi.org/10.1016/S0896-6273(00)80193-2>
19. Groves AK, Barnett SC, Franklin RJM. et al. Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature 1993; 362:453–5. <https://doi.org/10.1038/362453a0>
20. Imitola J. Genetic programs and responses of neural stem/progenitor cells during demyelination: potential insights into repair mechanisms in multiple sclerosis. Physiol. Genomics 2003; 14:171–97. <https://doi.org/10.1152/physiolgenomics.00021.2002>
21. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 2005; 96:25–34. <https://doi.org/10.1016/S0092-8674(00)80956-3>
22. John GR, Shankar SL, Shafit-Zagardo B et al. Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 2002; 8:1115–21. <https://doi.org/10.1038/nm781>
23. Keirstead HS, Blakemore WF. Identification of post-mitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord. J Neuropathol Exp Neurol 1997; 56:1191–201. <https://doi.org/10.1097/00005072-199711000-00003>
24. Kocsis JD, Akiyama Y, Radtke Ch. Neural precursors as a source to repair the demyelinated spinal cord. J Neurotrauma 2004; 21:441–9. <https://doi.org/10.1089/089771504323004584>
25. Linker RA, Maurer M, Gaupp S.et al. CNTF is a major protective factor in demyelinating CNS diseases. Nat Med 2002; 8:620–4. <https://doi.org/10.1038/nm0602-620>
26. Lipson AC, Widenfalk J, Linquist E, Ebendal T, Olson L. Neurotrophic properties of olfactory ensheathing glia. Exp Neurol 2003; 180:167–71. <https://doi.org/10.1016/S0014-4886(02)00058-4>
27. Mason JL, Suzuki K, Chaplin DD, Matsushima GK. Interleukin -1beta promotes repair of the CNS. J Neurosci 2001; 21:7046–52. <https://doi.org/10.1523/JNEUROSCI.21-18-07046.2001> <PubMed>
28. Mokrý J. Neurální prekurzorové buňky a jejich kultivace. Galén 1999; 18.
29. Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 2005; 49:385–96. <https://doi.org/10.1002/glia.20127>
30. Pluchino S.et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 2003; 422:688–94. <https://doi.org/10.1038/nature01552>
31. Pluchino S, Quattrini A, Brambilla E et al. Cell based remyelinating therapies in multiple sclerosis:evidence from experimental studies. Curr Opin Neurol 2004; 17:247–55. <https://doi.org/10.1097/00019052-200406000-00003>
32. Power J, Mayer-Proschel M, Smith J, Noble M. Oligodendrocyte precursor cells from different brain regions express divergent properties consistent with the differing time courses of myelination in these regions. Dev Biol 2002; 245:362–75. <https://doi.org/10.1006/dbio.2002.0610>
33. Prineas JW, Bernard RO, Kwon EE, Sharer LR, Cho ES. Multiple sclerosis: remyelination of nascent lesions. Ann Neurol 1993; 33:137–51. <https://doi.org/10.1002/ana.410330203>
34. Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes: cellular and molecular cues of biological functions. Trends Neurosci 1997; 20:570–7. <https://doi.org/10.1016/S0166-2236(97)01139-9>
35. Ruffini F, Furlan L, Poliani PL et al. Fibroblast growth factor-II gene therapy reverts the clinical course and the pathological signs of chronic experimental encephalomyelitis in C57BL/6 mice. Gene Ther 2001; 8:1207–13. <https://doi.org/10.1038/sj.gt.3301523>
36. Smith P, Lakatos A, Barnett SC, Jeffery ND, Franklin RJ. Cryopreserved cells isolated from the adult canine olfactory bulb are capable of extensive remyelination following transplantation into the adult rat CNS. Exp Neurol 2002; 176: 402–6. <https://doi.org/10.1006/exnr.2002.7936>
37. Teng YD, Lavik EB, Qu X et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 2002; 99:3024–9. <https://doi.org/10.1073/pnas.052678899> <PubMed>
38. Tourbah A., Linnington C, Bachelin C, Avellana-Adalid V, Werkerle H, Baron van-Evercooren A. Inflammation promotes survival and migration of the CG4 oligodendrocyte progenitors transplanted in the spinal cord of both inflammatory and demyelinated EAE rats. J Neurosci Res 1997; 50:853–67. <https://doi.org/10.1002/(SICI)1097-4547(19971201)50:5<853::AID-JNR21>3.0.CO;2-0>
39. Van der Goes A., Dijkstra CD. Models for demyelination. Progress in Brain Res 2001; 132:149–63. <https://doi.org/10.1016/S0079-6123(01)32072-1>
40. Viehover A, Miller RH, Park SK, Fischbach G, Vartanian T. Neuregulin: an oligodendrocytes growth factor absent in active multiple sclerosis lesions. Dev Neurosci 2001; 23:377–86. <https://doi.org/10.1159/000048721>
41. Webster HD. Growth factors and myelin regeneration in multiple sclerosis. Mult Scler 1997; 3:113–20. <https://doi.org/10.1177/135245859700300210>
42. Wewetzwr K, Verdú E, Angelov DN, Navarro X. Olfactory ensheathing glia and schwann cells: two of a kind? Cell Tissue Res 2002; 309:337–45. <https://doi.org/10.1007/s00441-002-0607-y>
43. Yanai J, Doetchman T, Laufer N et al. Embryonic cultures but not embryos transplanted to the mouse’s brain grow rapidly without immunosupression. Int J Neurosci 1995; 81:21–6. <https://doi.org/10.3109/00207459509015295>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive