Acta Med. 2006, 49: 3-11
https://doi.org/10.14712/18059694.2017.102
Protein Biotoxins of Military Significance
References
1. MD, Fairweather N, Charles IG, Emsley P, Isaacs NW, MacDermott: Crystallographic characterization of tetanus toxin fragment. C. J Mol Biol 1993; 230:673–4.
<https://doi.org/10.1006/jmbi.1993.1181>
2. L, Zamboni M, Montanaro L, Sperti S, Stirpe F, Purification and properties of different forms of modeccin, the toxin of Adenia digitata. Separation of subunits with inhibitory and lectin activity. Biochem J 1980; 185:203–10.
<https://doi.org/10.1042/bj1850203>
<PubMed>
3. S, Mohamed ZA, Wang J, Lehmann VK, Carmichael WW, Rinehart KL, Isolation and characterization of microcystins from a river nile strain of oscillatoria tenuis Agardh ex Gomont. Toxicon 2000; 38:1759–7.
<https://doi.org/10.1016/S0041-0101(00)00105-7>
4. S, Granum PE, Clostridium perfringens and foodborne infections. Int J Food Microbiol 2002; 74:195–202.
<https://doi.org/10.1016/S0168-1605(01)00680-8>
5. FJ, Prorok M. Conantokins: inhibitors of ion flow through the N-methyl- D-aspartate receptor channels. Curr Drug Targets 2000; 1: 219–35.
<https://doi.org/10.2174/1389450003349218>
6. A, Di Maro A, Monti MM, Stirpe F, Parente A. Volkensin from Adenia volkensii Harms (kilyambiti plant), a type 2 ribosome-inactivating protein. Eur J Biochem 2004; 271:108–17.
<https://doi.org/10.1046/j.1432-1033.2003.03909.x>
7. YL, Chow LP, Tsugita A, Lin JY. The complete primary structure of abrina B chain. FEBS Lett 1992; 309:115–8.
<https://doi.org/10.1016/0014-5793(92)81076-X>
8. M. Botulism: update and review. Semin Neurol 2004; 24:155–63.
<https://doi.org/10.1055/s-2004-830901>
9. RP, Lee SY, Tesh VL. Shiga toxins and apoptosis. FEMS Microbiol Let. 2003; 228:159–66.
<https://doi.org/10.1016/S0378-1097(03)00761-4>
10. Clark K. The Chemical Weapons Convention: Chemical and Toxin Warfare Agents and Disarmament. Royal Military College of Science, Cranfield University, August 1997.
11. RM. The toxicology of microcystins. Toxicon 1998; 36:953–62.
<https://doi.org/10.1016/S0041-0101(97)00102-5>
12. L, Hirst TR. Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (Review). Mol Membr Biol 2004; 21:77–92.
<https://doi.org/10.1080/09687680410001663267>
13. G, Fiorentini C, Matarrese P, Falzano L, Cardines R, Mastrantonio P, Payne DW, Titball RW. Evidence for cytoskeletal changes secondary to plasma membrane functional alterations in the in vitro cell response to Clostridium perfringens epsilon-toxin. Comp Immunol Microbiol Infect Dis 2003; 26:145–56.
<https://doi.org/10.1016/S0147-9571(02)00052-8>
14. K, Gill DM. Cholera toxin activation of adenylate cyclase. Roles of nucleoside triphosphates and a macromolecular factor in the ADP ribosylation of the GTP-dependent regulatory component. J Biol Chem 1980; 255:1252–8.
15. D, Andresen D. Conus geographus envenomation. Lancet 1997; 349:1672.
<https://doi.org/10.1016/S0140-6736(05)62639-6>
16. JH, Arbuthnott JP. Toxins of Staphylococcus aureus. Pharmacol Ther 1982; 19:55–106.
<https://doi.org/10.1016/0163-7258(82)90042-0>
17. A, Barbieri L, Lorenzoni E, Montanaro L, Sperti S, Bonetti E. Modeccin, the toxin of Adenia digitata. Purification, toxicity and inhibition of protein synthesis in vitro. Biochem J 1978; 174:491–6.
<https://doi.org/10.1042/bj1740491>
<PubMed>
18. DM. Bacterial toxins: a table of lethal amounts. Microbiol Rev 1982; 46: 86–94.
19. N, Sutor AH, Zimmerhackl LB, Brandis M. Hemolytic uremic syndromes in childhood. Semin Thromb Hemost 1997; 23:281–93.
<https://doi.org/10.1055/s-2007-996101>
20. WR, Damm MA, Anderson JD, et al. Further evidence associating hemolytic- uremic syndrome with infection by Verotoxin-producing Escherichia coli 0157:H7. J Infect Dis 1986; 154:522–4.
<https://doi.org/10.1093/infdis/154.3.522>
21. RA, Brown BR, Hutchins JB et al. Microbiological, biological, and chemical weapons of warfare and terrorism. Am J Med Sci 2002; 323:326–40.
<https://doi.org/10.1097/00000441-200206000-00005>
22. LF. Emil Adolph von Behring (1854–1917) and Shibasaburo Kitasato (1852–1931). J Neurol Neurosurg Psychiatry 2001; 71:62.
<https://doi.org/10.1136/jnnp.71.1.62>
<PubMed>
23. MR, Lord JM. Cytotoxic ribosome-inactivating lectins from plants. Biochim Biophys Acta 2004; 1701:1–14.
<https://doi.org/10.1016/j.bbapap.2004.06.004>
24. TB, Zwisler O, Wiegandt H. Structure of tetanus toxin. II. Toxin binding to ganglioside. J Biol Chem. 1977; 252:194–8.
25. A, Pohl M, Bhakdi S. Staphylococcus aureus alpha-toxin. Dual mechanism of binding to target cells. J Biol Chem 1991; 266:17195–200.
26. RK: Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis 2000; 181, Suppl 1:156–67.
<https://doi.org/10.1086/315554>
27. MA. Infection by Shiga toxin-producing Escherichia coli: an overview. Mol Biotechnol 2004; 26:117–22.
<https://doi.org/10.1385/MB:26:2:117>
28. S, Hagmann J, Fishman PH, Chang PP, Moss J. Mechanism of action of cholera toxin on intact cells. Generation of A1 peptide and activation of adenylate cyclase. J Biol Chem 1982; 257:12148–52.
29. BJ, Collins EJ, Robertus JD. Structure of ricin A-chain at 2.5 A. Proteins 1991; 10:251–9.
<https://doi.org/10.1002/prot.340100309>
30. M, Sumizawa T, Funatsu G: The complete amino acid sequences of the B-chains of abrin-a and abrin-b, toxic proteins from the seeds of Abrus precatorius. Biosci Biotechnol Biochem 1993; 57:166–9.
<https://doi.org/10.1271/bbb.57.166>
31. R, Eschenburg S, Perbandt M et al. Crystal structure of mistletoe lectin I from Viscum album. Biochem Biophys Res Commun 1999; 257:418–24.
<https://doi.org/10.1006/bbrc.1999.0470>
32. RJ. Conotoxins as selective inhibitors of neuronal ion channels, receptors and transporters. IUBMB Life 2004; 56:89–93.
<https://doi.org/10.1080/15216540410001668055>
33. JM, Roberts LM, Robertus JD. Ricin: structure, mode of action, and some current applications. FASEB J 1994; 8:201–8.
<https://doi.org/10.1096/fasebj.8.2.8119491>
34. DK, Freer JH, Arbuthnott JP, Mollby R, Wadstrom T. Consequences of sphingomyelin degradation in erythrocyte ghost membranes by staphylococcal beta-toxin (sphingomyelinase C). Toxicon 1974; 12:279–85.
<https://doi.org/10.1016/0041-0101(74)90070-1>
35. J, Krejčí V, Patočka J. Cyanotoxins and their effect on human health (Article in Czech). Kontakt 2004; 6(1): 43–51.
36. EA, Kuhn P, Sarfaty S, Erbe JL, Holmes RK, Hol WG. The 1.25 A resolution refinement of the cholera toxin B-pentamer: evidence of peptide backbone strain at the receptor-binding site. J Mol Biol 1998; 282:1043–59.
<https://doi.org/10.1006/jmbi.1998.2076>
37. EA, Sarfaty S, van den Akker F, L’Hoir C, Martial JA, Hol WG. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci 1994; 3:166–75.
<https://doi.org/10.1002/pro.5560030202>
<PubMed>
38. W, Villafranca JE, Monzingo AF et al. The three-dimensional structure of ricin at 2.8 A. J Biol Chem 1987; 262:5398–403.
39. KN, Wool IG. Analysis of the contribution of an amphiphilic alpha-helix to the structure and to the function of ricin A chain. Proc Natl Acad Sci USA 1994; 91:7530–3.
<https://doi.org/10.1073/pnas.91.16.7530>
<PubMed>
40. AD, Tesh VL, Donohue-Rolfe A, et al. Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr Topics Microbiol Immunol 1992; 180:65–94.
41. S, Oda M, Nagahama M, Sakurai J. Clostridium perfringens alpha-toxin-induced hemolysis of horse erythrocytes is dependent on Ca2+ uptake. Biochim Biophys Acta 2003; 1613:79–86.
<https://doi.org/10.1016/S0005-2736(03)00140-8>
42. Y, Matsunaga K. Chemical structures and the mechanism of action of peptide toxins from cone shells (Article in Japanese). Tanpakushitsu Kakusan Koso 2001; 46, Suppl l4:449–54.
43. S, Haylett T, Sandvig K. The toxic lectin modeccin. Methods Enzymol 1982; 83:357–62.
<https://doi.org/10.1016/0076-6879(82)83030-9>
44. S, Kozlov JV: Ricin. Toxicon 2001; 39:1723–8.
<https://doi.org/10.1016/S0041-0101(01)00158-1>
45. S, Pihl A. Kinetics of binding of the toxic lectins abrin and ricin to surface receptors of human cells. J Biol Chem 1976; 251:3977–84.
46. S, Sandvig K, Eiklid K, Pihl A. Properties and action mechanism of the toxic lectin modeccin: interaction with cell lines resistant to modeccin, abrin, and ricin. J Supramol Struct 1978; 9:15–25.
<https://doi.org/10.1002/jss.400090103>
47. S. The history of ricin, abrin and related toxins. Toxicon 2004; 44:361–70.
<https://doi.org/10.1016/j.toxicon.2004.05.003>
48. J. Abrin and ricin – two dangerous poisonous proteins. ASA Newsletter 2001; 85:205–8.
49. J, Špliňo M. Botulinum toxin: from poison to medicinal agent. ASA Newsletter 2002; 88:14–9.
50. J, Špliňo M, Měrka V. Botulism and bioterrorism: How serious is this problem? Acta Medica (Hradec Kralove) 2005; 48:23–8.
<https://doi.org/10.14712/18059694.2018.24>
51. J, Středa L. Brief review of natural nonprotein neurotoxins. ASA Newsletter 2002; 89:16–24.
52. J, Středa L. Plant toxic proteins and their current significance for warfare and medicine. J Appl Biomed 2003; 1:141–7.
53. J. The toxins of cyanobacteria. Acta Medica (Hradec Kralove) 2001; 44:69–75.
54. J: Toxicological characteristic of ricin (Article in Czech). Voj Zdrav Listy 1998; 67:166–8.
55. L, Gibert M, Gourch A, Bens M, Vandewalle A, Popoff MR. Clostridium perfringens epsilon toxin rapidly decreases membrane barrier permeability of polarized MDCK cells. Cell Microbiol. 2003; 5:155–64.
<https://doi.org/10.1046/j.1462-5822.2003.00262.x>
56. K, Haylett T, Sandvig K, Olsnes S. Modeccin – a plant toxin inhibiting protein synthesis. Biochem Biophys Res Commun 1977; 79:1176–83.
<https://doi.org/10.1016/0006-291X(77)91130-5>
57. RF, Nahata MC. Management of botulism. Ann Pharmacother 2003; 37:127–31.
<https://doi.org/10.1345/aph.1C034>
58. E, Robertus JD. Structure of ricin B-chain at 2.5 A resolution. Proteins 1991; 10:260–9.
<https://doi.org/10.1002/prot.340100310>
59. DI, Kohan DE. Effect of shigatoxin-1 on arachidonic acid release by human glomerular epithelial cells. Kidney Int 2001; 60:1026–36.
<https://doi.org/10.1046/j.1523-1755.2001.0600031026.x>
60. N, Lis H. Cell-agglutinating and sugar-specific proteins. Science 1972; 177:949–59.
<https://doi.org/10.1126/science.177.4053.949>
61. LN, Greenfield RA. Biological toxins as potential agents of bioterrorism. J Okla State Med Assoc 2003; 96:73–6.
62. JG, Fisher DJ, Sayeed S, Chakrabarti G, McClane BA. The enteric toxins of Clostridium perfringens. Rev Physiol Biochem Pharmacol 2004; 152:183–204.
<https://doi.org/10.1007/s10254-004-0036-2>
63. F. Ribosome-inactivating proteins. Toxicon 2004; 44:371–83.
<https://doi.org/10.1016/j.toxicon.2004.05.004>
64. M, Blomqvist L. Staphylococcal alpha toxin—recent advances. Toxicon 1988; 26:55–65.
<https://doi.org/10.1016/0041-0101(88)90137-7>
65. K, Chaddock JA, Acharya KR. Botulinum and tetanus neurotoxins: structure, function and therapeutic utility. Trends Biochem Sci 2002; 27:552–8.
<https://doi.org/10.1016/S0968-0004(02)02177-1>
66. KY, Xu Q. Lectins and Toxins. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2000; 32:201–5.
67. M, Fishbain JT. Aerosolized biologic toxins as agents of warfare and terrorism. Respir Care Clin N Am 2004; 10:111–22.
<https://doi.org/10.1016/S1078-5337(03)00054-6>


