Acta Med. 2006, 49: 13-18

https://doi.org/10.14712/18059694.2017.103

Apoptotic Machinery: The Bcl-2 Family Proteins in the Role of Inspectors and Superintendents

Aleš Tichý

Charles University in Prague, Faculty of Medicine in Hradec Králové, Department of Medical Biochemistry, Hradec Králové, Czech Republic

Received July 1, 2005
Accepted March 1, 2006

References

1. Adams JA, Corry S. The Bcl-2 protein family: arbiters of cell survival. Science 1998; 281:1322–6. <https://doi.org/10.1126/science.281.5381.1322>
2. Aritomi M, Kunishima N, Inohara N, Ishbashi Y, Ohta S and Morikawa K. Crystal structure of rat Bcl-xL: implications for the functions of the Bcl-2 protein family. J Biol Chem 1997; 272:27886–92. <https://doi.org/10.1074/jbc.272.44.27886>
3. Belka C, Budach W. Anti-apoptotic Bcl-2 proteins: structure, function and relevance for radiation biology. Int J Radiat Biol 2002; 78(8):643–58. <https://doi.org/10.1080/09553000210137680>
4. Boise LH, Gonzales-Garcia M, Postema CE et al. Bcl-x, Bcl-2 related gene that functions as a dominant regulator apoptotic cell death. Cell 1993; 74:597–608. <https://doi.org/10.1016/0092-8674(93)90508-N>
5. Borner C. The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immun 2003; 39:615–47. <https://doi.org/10.1016/S0161-5890(02)00252-3>
6. Bouillet P, Strasser A. BH3-only proteins – evolutionary conserved pro-apoptotic Bcl-2 family members essential for initiating programmed cell death. J Cell Science 2002; 115:1567–74.
7. Brachmann CB, Jassim OW, Waschmuth BD, Cagan RL. The drosophila Bcl-2 family member dBorg1 functions in the apoptotic response to UV-irradiation. Curr Biol 2000; 10:547–50. <https://doi.org/10.1016/S0960-9822(00)00474-7>
8. Burlacu A. Regulation of apoptosis by Bcl-2 family proteins. J Cell Mol Med 2003; 7(3):249–57. <https://doi.org/10.1111/j.1582-4934.2003.tb00225.x> <PubMed>
9. Cerman J, Čáp J, Mareková M et al. The role of apoptosis in pituitary adenomas in the field of conventionally used therapeutic approaches. Annals NY Acad Sci 2003; 1010:520–4. <https://doi.org/10.1196/annals.1299.096>
10. Cheng EH, Wei MC, Weiler S et al. Bcl-2 and Bcl-xL sequester BH3 domain-only molecules preventing Bax- and Bak-mediated mitochondrial apoptosis. Mol Cell 2001; 8:705–11. <https://doi.org/10.1016/S1097-2765(01)00320-3>
11. Colussi PA, Quinn LM, Huang DC et al. Debcl, proapoptotic Bcl-2 homologue is a component of the Drosophila melanogaster cell death machinery. J Cell Biol 2000; 148:703–14. <https://doi.org/10.1083/jcb.148.4.703> <PubMed>
12. Červinka M, Cerman J, Rudolf E. Apoptosis in Hep-2 cells treated with etoposide and colchicine. Cancer Detect Prev 2004; 28:214–26. <https://doi.org/10.1016/j.cdp.2004.03.002>
13. Degterev A, Lugovskoy A, Cardone M et al. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 2001; 3(2):173–82. <https://doi.org/10.1038/35055085>
14. Desagher S, Osen-Sand A, Nichols A, Eskes R, Monetssuit S, Lauper S. Phosphorylation of Bid by casein kinase I and II regulates its cleavage by caspase-8. Moll Cell 1999; 8:601–11. <https://doi.org/10.1016/S1097-2765(01)00335-5>
15. Esposti MD. Sequence and functional similarities between pro-apoptotic Bid and plant lipid transfer protein. Biochim Biophys Acta 2002; 1553:331–40. <https://doi.org/10.1016/S0005-2728(02)00187-1>
16. Farrow SN, Brown R. New members of the Bcl-2 family and their protein partners. Curr Opin Genet Dev 1996; 6:45–9. <https://doi.org/10.1016/S0959-437X(96)90009-X>
17. Fridman JS, Parsels J, Rehemtulla A, Maybaum J. Cytochrome c depletion upon expression of Bcl-XS. J Biol Chem 2001; 276:4205–10. <https://doi.org/10.1074/jbc.M008171200>
18. Hengartner MO. The biochemistry of apoptosis. Cell 1993; 75:241–51.
19. Hockenbery DM, Oltvai ZN, Yin XM, Miliman C, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993; 75:241–51. <https://doi.org/10.1016/0092-8674(93)80066-N>
20. Inohara N, Ekhterae D, Garcia I, Carrio R, Merry A, Chen S. Mtd, a novel Bcl-2 family member activates apoptosis in the absence of heterodimerization with Bcl- 2 and Bcl-xL. J Biol Chem 1998; 273:8705–10. <https://doi.org/10.1074/jbc.273.15.8705>
21. Korsmeyer SJ. Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 1992; 80:879–86.
22. Lakin ND, Jacskon SP. Regulation of p53 in response to DNA damage. Oncogene 1999; 18:7644–55. <https://doi.org/10.1038/sj.onc.1203015>
23. Letai A, Bassik M, Walensky L, Sorcinelli M, Weiler S, Korsmeyer S. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002; 2:183–92. <https://doi.org/10.1016/S1535-6108(02)00127-7>
24. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of Bid by caspase-8 mediates the mitochondrial damage in the Fas pathway to apoptosis. Cell 1998; 94:491–501. <https://doi.org/10.1016/S0092-8674(00)81590-1>
25. Locksley RM, Killeen M, Lenardo MJ. The TNF and TNF superfamilies: integrating mammalian biology. Cell 2001; 104:487–501. <https://doi.org/10.1016/S0092-8674(01)00237-9>
26. Lutter M, Fang M, Luo X, Nishijima M, Xie X, Wang X. Cardiolipin provides specifity for targeting of tBid to mitochondria. Nat Cell Biol 2000; 2:754–61. <https://doi.org/10.1038/35036395>
27. Mareková M, Čáp J, Vokurková D, Cerman J. Effect of therapeutic doses of ionising radiation on the somatomammotroph pituitary cell line, GH3. Endocrine J 2003; 50:621–8. <https://doi.org/10.1507/endocrj.50.621>
28. Marzo I, Brenner C, Zamzami N et al. The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med 1998; 187(8):1261–71. <https://doi.org/10.1084/jem.187.8.1261> <PubMed>
29. Medema JP, Scaffidi C, Kischkel FC et al. FLICE is activated by association with the CD95 death-inducing signalling complex (DISC). EMBO J 1997; 16: 2794–804. <https://doi.org/10.1093/emboj/16.10.2794> <PubMed>
30. Nechushtan A, Smith CL, Hsu Y-T, Youle RJ. Confirmation of the Bax C-terminus regulates subcellular location and cell death. EMBO J 1999; 18:2330–41. <https://doi.org/10.1093/emboj/18.9.2330> <PubMed>
31. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74: 609–19. <https://doi.org/10.1016/0092-8674(93)90509-O>
32. Pastorino JG, Tafani M, Rothman RJ, Marcineviciute A, Hoek JB, Farber JL. Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore. J Biol Chem 1999; 274(44):31734–9. <https://doi.org/10.1074/jbc.274.44.31734>
33. Patterson SD, Spahr CS, Daugas E et al. Mass spectrophotometric identification of proteins released from mitochondria undergoing permeability transition. Cell Death Differ 2000; 7:137–44. <https://doi.org/10.1038/sj.cdd.4400640>
34. Petros AM, Medek A, Nettesheim DG et al. Solution structure of the anti-apoptotic protein bcl-2. Proc Natl Acad Sci USA 2000; 98:3012–7. <https://doi.org/10.1073/pnas.041619798> <PubMed>
35. Philchenkov A. Caspases: potential targets for regulating cell death. J Cell Mol Med 2004; 8(4):432–44. <https://doi.org/10.1111/j.1582-4934.2004.tb00468.x> <PubMed>
36. Puthalakath H, Huang DCS, O’Reilly LA, King SM, Strasser A. The pro-apoptotic activity of the Bcl-2 family member Bim is regulated by interaction with dynein motor complex. Mol Cell 1999; 3:287–96. <https://doi.org/10.1016/S1097-2765(00)80456-6>
37. Rathmell JC, Thompson CB. Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell 2002; 109(suppl):S97–107. <https://doi.org/10.1016/S0092-8674(02)00704-3>
38. Reed J. Bcl-2 family proteins. Oncogene 1998; 17:3225–36. <https://doi.org/10.1038/sj.onc.1202591>
39. Robertson JD, Enoksson M, Suomella M, Zhivotovsky B, Orrenius S. Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide- induced apoptosis. J Biol Chem 2002; 277:29803–9. <https://doi.org/10.1074/jbc.M204185200>
40. Rodriguez J, Lazebnik Y. Caspase-9 and Apaf-1 form an active holoenzyme. Genes Dev 1999; 13:3179–84. <https://doi.org/10.1101/gad.13.24.3179> <PubMed>
41. Sattler M, Liang H, Nettesheim D et al. Structure of Bcl-xl-Bak peptide complex: recognition between regulators and apoptosis. Science 1997; 275:983–6. <https://doi.org/10.1126/science.275.5302.983>
42. Scaffidi C, Fulda S, Srinivasan A et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998; 17:1675–87. <https://doi.org/10.1093/emboj/17.6.1675> <PubMed>
43. Shi Z. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 2002; 9:459–70. <https://doi.org/10.1016/S1097-2765(02)00482-3>
44. Shimizu S, Tsujimoto Y. Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc Natl Acad Sci USA 2000; 97(2):577–82. <https://doi.org/10.1073/pnas.97.2.577> <PubMed>
45. Schendel SL, Azimov R, Pawlowski K, Godzik A, Kagan BL, Reed JC. Ion channel activity of the BH3-only Bcl-2 family member, Bid. J Biol Chem 1999; 274:21932–6. <https://doi.org/10.1074/jbc.274.31.21932>
46. Stoka V, Turk B, Schendel SL et al. Lysosomal proteass pathways to apoptosis. Cleavage of Bid, not pro-caspases is the most likely route. J Biol Chem 2001; 276: 3149–57. <https://doi.org/10.1074/jbc.M008944200>
47. Thomenius MJ, Clark WD. Bcl-2 on the endoplasmatic reticulum: protecting the mitochondria from a distance. J Cell Science 2003; 116:4493–9. <https://doi.org/10.1242/jcs.00829>
48. Thompson CB. Apoptosis in pathogenesis and treatment of disease. Science 1995; 267:1456–62. <https://doi.org/10.1126/science.7878464>
49. Van Loo G, van Gurp M, Depuydt B et al. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 2002; 9:20–6. <https://doi.org/10.1038/sj.cdd.4400970>
50. Vaux DL, Korsmeyer SJ. Cell death in development. Cell 1999; 96:245–54. <https://doi.org/10.1016/S0092-8674(00)80564-4>
51. Wang HG, Pathan N, Ethell IM et al. Ca2+ induced apoptosis through calcineurin dephosphorylation of Bad. Science 1999; 284:339–43. <https://doi.org/10.1126/science.284.5412.339>
52. Wei MC, Lindsten T, Mootha VK et al. TBid, a membrane-targeted death ligand, oligomerizes Bak to release cytochrome c. Genes Dev 2000; 14:2060–71.
53. Yin XM, Wang K, Gross A et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. 1999; 400(6747):886–91.
54. Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2001; 2:67–71. <https://doi.org/10.1038/35048073>
55. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist Bad in response to survival factor results in binding to 14–3–3 not Bcl-xL. Cell 1996; 87:619–28. <https://doi.org/10.1016/S0092-8674(00)81382-3>
56. Zha J, Weiler S, Oh KJ, Wei MC, Korsmeyer SJ. Post-translational N-myristoylation of Bid as a molecular switch for targeting mitochondria and apoptosis. Science 2000; 290:1761–5. <https://doi.org/10.1126/science.290.5497.1761>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive