Acta Med. 2006, 49: 13-18
https://doi.org/10.14712/18059694.2017.103
Apoptotic Machinery: The Bcl-2 Family Proteins in the Role of Inspectors and Superintendents
References
1. Science 1998; 281:1322–6.
< JA, Corry S. The Bcl-2 protein family: arbiters of cell survival. https://doi.org/10.1126/science.281.5381.1322>
2. J Biol Chem 1997; 272:27886–92.
< M, Kunishima N, Inohara N, Ishbashi Y, Ohta S and Morikawa K. Crystal structure of rat Bcl-xL: implications for the functions of the Bcl-2 protein family. https://doi.org/10.1074/jbc.272.44.27886>
3. Int J Radiat Biol 2002; 78(8):643–58.
< C, Budach W. Anti-apoptotic Bcl-2 proteins: structure, function and relevance for radiation biology. https://doi.org/10.1080/09553000210137680>
4. Cell 1993; 74:597–608.
< LH, Gonzales-Garcia M, Postema CE et al. Bcl-x, Bcl-2 related gene that functions as a dominant regulator apoptotic cell death. https://doi.org/10.1016/0092-8674(93)90508-N>
5. Mol Immun 2003; 39:615–47.
< C. The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. https://doi.org/10.1016/S0161-5890(02)00252-3>
6. J Cell Science 2002; 115:1567–74.
P, Strasser A. BH3-only proteins – evolutionary conserved pro-apoptotic Bcl-2 family members essential for initiating programmed cell death.
7. Curr Biol 2000; 10:547–50.
< CB, Jassim OW, Waschmuth BD, Cagan RL. The drosophila Bcl-2 family member dBorg1 functions in the apoptotic response to UV-irradiation. https://doi.org/10.1016/S0960-9822(00)00474-7>
8. J Cell Mol Med 2003; 7(3):249–57.
< A. Regulation of apoptosis by Bcl-2 family proteins. https://doi.org/10.1111/j.1582-4934.2003.tb00225.x>
<PubMed>
9. Annals NY Acad Sci 2003; 1010:520–4.
< J, Čáp J, Mareková M et al. The role of apoptosis in pituitary adenomas in the field of conventionally used therapeutic approaches. https://doi.org/10.1196/annals.1299.096>
10. Mol Cell 2001; 8:705–11.
< EH, Wei MC, Weiler S et al. Bcl-2 and Bcl-xL sequester BH3 domain-only molecules preventing Bax- and Bak-mediated mitochondrial apoptosis. https://doi.org/10.1016/S1097-2765(01)00320-3>
11. J Cell Biol 2000; 148:703–14.
< PA, Quinn LM, Huang DC et al. Debcl, proapoptotic Bcl-2 homologue is a component of the Drosophila melanogaster cell death machinery. https://doi.org/10.1083/jcb.148.4.703>
<PubMed>
12. Cancer Detect Prev 2004; 28:214–26.
< M, Cerman J, Rudolf E. Apoptosis in Hep-2 cells treated with etoposide and colchicine. https://doi.org/10.1016/j.cdp.2004.03.002>
13. Nat Cell Biol 2001; 3(2):173–82.
< A, Lugovskoy A, Cardone M et al. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. https://doi.org/10.1038/35055085>
14. Moll Cell 1999; 8:601–11.
< S, Osen-Sand A, Nichols A, Eskes R, Monetssuit S, Lauper S. Phosphorylation of Bid by casein kinase I and II regulates its cleavage by caspase-8. https://doi.org/10.1016/S1097-2765(01)00335-5>
15. Biochim Biophys Acta 2002; 1553:331–40.
< MD. Sequence and functional similarities between pro-apoptotic Bid and plant lipid transfer protein. https://doi.org/10.1016/S0005-2728(02)00187-1>
16. Curr Opin Genet Dev 1996; 6:45–9.
< SN, Brown R. New members of the Bcl-2 family and their protein partners. https://doi.org/10.1016/S0959-437X(96)90009-X>
17. J Biol Chem 2001; 276:4205–10.
< JS, Parsels J, Rehemtulla A, Maybaum J. Cytochrome c depletion upon expression of Bcl-XS. https://doi.org/10.1074/jbc.M008171200>
18. Cell 1993; 75:241–51.
MO. The biochemistry of apoptosis.
19. Cell 1993; 75:241–51.
< DM, Oltvai ZN, Yin XM, Miliman C, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. https://doi.org/10.1016/0092-8674(93)80066-N>
20. J Biol Chem 1998; 273:8705–10.
< N, Ekhterae D, Garcia I, Carrio R, Merry A, Chen S. Mtd, a novel Bcl-2 family member activates apoptosis in the absence of heterodimerization with Bcl- 2 and Bcl-xL. https://doi.org/10.1074/jbc.273.15.8705>
21. Blood 1992; 80:879–86.
SJ. Bcl-2 initiates a new category of oncogenes: regulators of cell death.
22. Oncogene 1999; 18:7644–55.
< ND, Jacskon SP. Regulation of p53 in response to DNA damage. https://doi.org/10.1038/sj.onc.1203015>
23. Cancer Cell 2002; 2:183–92.
< A, Bassik M, Walensky L, Sorcinelli M, Weiler S, Korsmeyer S. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. https://doi.org/10.1016/S1535-6108(02)00127-7>
24. Cell 1998; 94:491–501.
< H, Zhu H, Xu CJ, Yuan J. Cleavage of Bid by caspase-8 mediates the mitochondrial damage in the Fas pathway to apoptosis. https://doi.org/10.1016/S0092-8674(00)81590-1>
25. Cell 2001; 104:487–501.
< RM, Killeen M, Lenardo MJ. The TNF and TNF superfamilies: integrating mammalian biology. https://doi.org/10.1016/S0092-8674(01)00237-9>
26. Nat Cell Biol 2000; 2:754–61.
< M, Fang M, Luo X, Nishijima M, Xie X, Wang X. Cardiolipin provides specifity for targeting of tBid to mitochondria. https://doi.org/10.1038/35036395>
27. Endocrine J 2003; 50:621–8.
< M, Čáp J, Vokurková D, Cerman J. Effect of therapeutic doses of ionising radiation on the somatomammotroph pituitary cell line, GH3. https://doi.org/10.1507/endocrj.50.621>
28. J Exp Med 1998; 187(8):1261–71.
< I, Brenner C, Zamzami N et al. The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. https://doi.org/10.1084/jem.187.8.1261>
<PubMed>
29. EMBO J 1997; 16: 2794–804.
< JP, Scaffidi C, Kischkel FC et al. FLICE is activated by association with the CD95 death-inducing signalling complex (DISC). https://doi.org/10.1093/emboj/16.10.2794>
<PubMed>
30. EMBO J 1999; 18:2330–41.
< A, Smith CL, Hsu Y-T, Youle RJ. Confirmation of the Bax C-terminus regulates subcellular location and cell death. https://doi.org/10.1093/emboj/18.9.2330>
<PubMed>
31. Cell 1993; 74: 609–19.
< ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. https://doi.org/10.1016/0092-8674(93)90509-O>
32. J Biol Chem 1999; 274(44):31734–9.
< JG, Tafani M, Rothman RJ, Marcineviciute A, Hoek JB, Farber JL. Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore. https://doi.org/10.1074/jbc.274.44.31734>
33. Cell Death Differ 2000; 7:137–44.
< SD, Spahr CS, Daugas E et al. Mass spectrophotometric identification of proteins released from mitochondria undergoing permeability transition. https://doi.org/10.1038/sj.cdd.4400640>
34. Proc Natl Acad Sci USA 2000; 98:3012–7.
< AM, Medek A, Nettesheim DG et al. Solution structure of the anti-apoptotic protein bcl-2. https://doi.org/10.1073/pnas.041619798>
<PubMed>
35. J Cell Mol Med 2004; 8(4):432–44.
< A. Caspases: potential targets for regulating cell death. https://doi.org/10.1111/j.1582-4934.2004.tb00468.x>
<PubMed>
36. Mol Cell 1999; 3:287–96.
< H, Huang DCS, O’Reilly LA, King SM, Strasser A. The pro-apoptotic activity of the Bcl-2 family member Bim is regulated by interaction with dynein motor complex. https://doi.org/10.1016/S1097-2765(00)80456-6>
37. Cell 2002; 109(suppl):S97–107.
< JC, Thompson CB. Pathways of apoptosis in lymphocyte development, homeostasis, and disease. https://doi.org/10.1016/S0092-8674(02)00704-3>
38. Oncogene 1998; 17:3225–36.
< J. Bcl-2 family proteins. https://doi.org/10.1038/sj.onc.1202591>
39. J Biol Chem 2002; 277:29803–9.
< JD, Enoksson M, Suomella M, Zhivotovsky B, Orrenius S. Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide- induced apoptosis. https://doi.org/10.1074/jbc.M204185200>
40. Genes Dev 1999; 13:3179–84.
< J, Lazebnik Y. Caspase-9 and Apaf-1 form an active holoenzyme. https://doi.org/10.1101/gad.13.24.3179>
<PubMed>
41. Science 1997; 275:983–6.
< M, Liang H, Nettesheim D et al. Structure of Bcl-xl-Bak peptide complex: recognition between regulators and apoptosis. https://doi.org/10.1126/science.275.5302.983>
42. EMBO J 1998; 17:1675–87.
< C, Fulda S, Srinivasan A et al. Two CD95 (APO-1/Fas) signaling pathways. https://doi.org/10.1093/emboj/17.6.1675>
<PubMed>
43. Mol Cell 2002; 9:459–70.
< Z. Mechanisms of caspase activation and inhibition during apoptosis. https://doi.org/10.1016/S1097-2765(02)00482-3>
44. Proc Natl Acad Sci USA 2000; 97(2):577–82.
< S, Tsujimoto Y. Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. https://doi.org/10.1073/pnas.97.2.577>
<PubMed>
45. J Biol Chem 1999; 274:21932–6.
< SL, Azimov R, Pawlowski K, Godzik A, Kagan BL, Reed JC. Ion channel activity of the BH3-only Bcl-2 family member, Bid. https://doi.org/10.1074/jbc.274.31.21932>
46. J Biol Chem 2001; 276: 3149–57.
< V, Turk B, Schendel SL et al. Lysosomal proteass pathways to apoptosis. Cleavage of Bid, not pro-caspases is the most likely route. https://doi.org/10.1074/jbc.M008944200>
47. J Cell Science 2003; 116:4493–9.
< MJ, Clark WD. Bcl-2 on the endoplasmatic reticulum: protecting the mitochondria from a distance. https://doi.org/10.1242/jcs.00829>
48. Science 1995; 267:1456–62.
< CB. Apoptosis in pathogenesis and treatment of disease. https://doi.org/10.1126/science.7878464>
49. Cell Death Differ 2002; 9:20–6.
< G, van Gurp M, Depuydt B et al. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase inhibitor XIAP and induces enhanced caspase activity. https://doi.org/10.1038/sj.cdd.4400970>
50. Cell 1999; 96:245–54.
< DL, Korsmeyer SJ. Cell death in development. https://doi.org/10.1016/S0092-8674(00)80564-4>
51. Science 1999; 284:339–43.
< HG, Pathan N, Ethell IM et al. Ca2+ induced apoptosis through calcineurin dephosphorylation of Bad. https://doi.org/10.1126/science.284.5412.339>
52. Genes Dev 2000; 14:2060–71.
MC, Lindsten T, Mootha VK et al. TBid, a membrane-targeted death ligand, oligomerizes Bak to release cytochrome c.
53. Yin XM, Wang K, Gross A et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. 1999; 400(6747):886–91.
54. Nat Rev Mol Cell Biol 2001; 2:67–71.
< N, Kroemer G. The mitochondrion in apoptosis: how Pandora’s box opens. https://doi.org/10.1038/35048073>
55. Cell 1996; 87:619–28.
< J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist Bad in response to survival factor results in binding to 14–3–3 not Bcl-xL. https://doi.org/10.1016/S0092-8674(00)81382-3>
56. Science 2000; 290:1761–5.
< J, Weiler S, Oh KJ, Wei MC, Korsmeyer SJ. Post-translational N-myristoylation of Bid as a molecular switch for targeting mitochondria and apoptosis. https://doi.org/10.1126/science.290.5497.1761>