Acta Med. 2006, 49: 35-39

https://doi.org/10.14712/18059694.2017.107

Glycation and Advanced Glycation End-Products in Laboratory Experiments in Vivo and in Vitro

Martin Beráneka, Daniela Novákováb, Pavel Rozsívalb, Jaroslav Dršatac, Vladimír Paličkaa

aCharles University in Prague, Faculty of Medicine and University Hospital in Hradec Králové, Institute for Clinical Biochemistry and Diagnostics, Hradec Králové, Czech Republic
bCharles University in Prague, Faculty of Medicine and University Hospital in Hradec Králové, Department of Ophthalmology, Hradec Králové, Czech Republic
cCharles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Hradec Králové, Czech Republic

Received May 1, 2005
Accepted March 1, 2006

References

1. Beisswenger PJ, Moore LL, Brinck-Johnsen T, Curphey TJ. Increased collagenlinked pentosidine and advanced glycosylation end-products in early diabetic nephropathy. J Clin Invest 1993; 92: 212–7. <https://doi.org/10.1172/JCI116552> <PubMed>
2. Beránek M, Dršata J, Palička V. Inhibitory effect of glycation on catalytic activity of alanine aminotransferase. Mol Cell Biochem 2001; 218: 35–9. <https://doi.org/10.1023/A:1007280913732>
3. Blakytny R, Harding JJ. Prevention of cataract in diabetic rats by aspirin, paracetamol (acetaminophen) and ibuprofen. Exp Eye Res 1992; 54: 509–18.
4. Borchman D, Yappert MC, Rubini RG, Peterson CA. Distribution of phospholipid- malondialdehyde – adduct in the human lens. Curr Eye Res 1989; 8: 939–46. <https://doi.org/10.3109/02713688908997397>
5. Brownelee M, Vlassara H, Cerami A. Inhibition of heparin-catalyzed human antithrombin III activity by nonenzymatic glycation. Diabetes 1984; 33: 532–5.
6. Bunn HF, Gabbay KH, Gallop PM. The glycosylation of hemoglobin: relevance to diabetes mellitus. Science 1978; 200: 21–7. <https://doi.org/10.1126/science.635569>
7. Cohen MP, Urdanivia E, Surma M, Wu VY. Increased glycosylation of glomerular basement membrane collagen in diabetes. Biochem Biophys Res Commun 1980; 95: 765–9. <https://doi.org/10.1016/0006-291X(80)90852-9>
8. Calvo C, Talussot C, Ponsin G, Berthezene F. Non enzymatic glycation of apolipoprotein A-I effects on its self-association and lipid binding properties. Biochem Biophys Res Commun 1988; 153: 1060–7. <https://doi.org/10.1016/S0006-291X(88)81336-6>
9. Ditzel J. Oxygen transport impairment in diabetes. Diabetes 1976; 25: 832–8.
10. Dolhofer-Bliesener R, Lechner B, Gerbitz KD. Possible significance of advanced glycation end products in serum in end-stage renal disease and in late complications of diabetes. Eur J Clin Chem Clin Biochem 1996; 34: 355–61.
11. Dršata J, Beránek M, Palička V. Inhibition of aspartate aminotransferase by glycation in vitro under various conditions. J Enzyme Inhib Med Chem 2002; 17: 31–6. <https://doi.org/10.1080/14756360290029501>
12. Ederer F, Hiller R, Taylor HR. Senile lens changes and diabetes in two population studies. Am J Ophthalmol 1981; 91: 381–95. <https://doi.org/10.1016/0002-9394(81)90293-2>
13. Geiger M, Binder BR. Nonenzymatic glucosylation as a contributing factor to defective fibrinolysis in diabetes mellitus. Haemostasis 1986; 16: 439–46.
14. Giardino I, Edelstein D, Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. J Clin Invest 1994; 94: 110–7. <https://doi.org/10.1172/JCI117296> <PubMed>
15. Kohn RR, Schnider SL. Glucosylation of human collagen. Diabetes 1982; 31: 47–51. <https://doi.org/10.2337/diab.31.3.S47>
16. Krantz S, Lober M, Thiele M, Teuscher E. Properties of i vitro nonenzymatically glycated plasma fibrinogens. Exp Clin Endocrinol 1987; 90: 37–45. <https://doi.org/10.1055/s-0029-1210670>
17. Laaksonen DE, Atalay M, Niskanen L, Uusitupa M, Hanninen O, Sen CK. Increased resting and exercise-induced oxidative stress in young IDDM men. Diabetes Care 1996; 19: 569–74. <https://doi.org/10.2337/diacare.19.6.569>
18. Liang JN, Chylack LT. Spectroscopic study on the effects of nonenzymatic glycation in human α-crystallin. Invest Ophthalmol Vis Sci 1987; 28: 790–4.
19. McMillan DE, Brooks SM. Erythrocyte spectrin glucosylation in diabetes. Diabetes 1982; 31: 64–9. <https://doi.org/10.2337/diab.31.3.S64>
20. Monnier VM, Vishwanath V, Frank KE, Elmets CA, Dauchot P, Kohn RR. Relation between complications of type I diabetes mellitus and collagen-linked fluorescence. N Engl J Med 1986; 314: 403–8. <https://doi.org/10.1056/NEJM198602133140702>
21. Muruganandam A, Romsa GJ, Thibert RJ, Cheung RMC, Draisey TF, Mutus B. Glycated calmodulin from platelets as an index of glycemic control. Clin Chem 1993; 39: 815–9.
22. Odetti P, Fogarty J, Sell DR, Monnier VM. Chromatographic quantification of plasma and erythrocyty pentosidine in diabetic and uremic subjects. Diabetes 1992; 41: 153–9. <https://doi.org/10.2337/diab.41.2.153>
23. Panteghini M, Cimino A, Pagani F, Girelli A. Nonenzymatic glycation of apolipoprotein B in patients with insulin- and noninsulin-dependent diabetes mellitus. Clin Biochem 1995; 28: 587–592. <https://doi.org/10.1016/0009-9120(95)00041-5>
24. Prabhakaram M, Ortweth BJ. Determination of glycation crosslinking by the sugar-dependent incorporation of (14C) lysine into protein. Anal Biochem 1994; 216: 305–12. <https://doi.org/10.1006/abio.1994.1046>
25. Prabhakaram M, Smith JB, Ortwerth BJ. Rapid assessment of early glycation products by mass spectrometry. Biochem Mol Biol Int 1996; 40: 315–25.
26. Ross AD, Sheng H, Warner DS, et al. Hemodynamic effects of metalloporphyrin catalytic antioxidants: structure-activity relationships and species specificity. Free Radic Biol Med, 33, 2002, 1657–69. <https://doi.org/10.1016/S0891-5849(02)01140-1>
27. Shoda H, Miyata S, Liu BF, et al. Inhibitory effects of tenilsetam on the Maillard reaction. Endocrinology 1997; 138: 1886–92. <https://doi.org/10.1210/endo.138.5.5151>
28. Soriano FG, Pacher P, Mabley J, Liaudet L, Szabo C. Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly(ADP-ribose) polymerase. Circ Res 2001; 89: 684–91. <https://doi.org/10.1161/hh2001.097797>
29. Spector A. Oxidative stress induced cataract: mechanism of action. FASEB J 1995; 9: 1173. <https://doi.org/10.1096/fasebj.9.12.7672510>
30. Stevens VS, Rouzer CA, Monnier VM, Cerami A. Diabetic cataract formation: potential role of glycosylation of lens crystallins. Proc Natl Acad Sci USA 1978; 75: 2918–22. <https://doi.org/10.1073/pnas.75.6.2918> <PubMed>
31. Syrový I. Glycation of albumin: reaction with glucose, fructose, galactose, ribose or glyceraldehyde measured using four methods. J Biochem Biophys Methods 1994; 28: 115–21. <https://doi.org/10.1016/0165-022X(94)90025-6>
32. Tang X, Sadeghi M, Olumee Z, Vertes A. Detection and quantification of β-2- microglobulin glycosylated end products in human serum by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 1996; 68: 3740–5. <https://doi.org/10.1021/ac960516u>
33. Thorpe SR, Baynes JW. Role of the Maillard reaction in diabetes mellitus and diseases of aging. Drugs et Aging 1996; 9: 69–77. <https://doi.org/10.2165/00002512-199609020-00001>
34. Van Campenhout A, Van Campenhout Ch, Lagrou AR, Manuel-Y-Keenoy B. Effects of in vitro glycation on Fe3+ binding and Fe3+ isoforms of transferrin. Clin Chem 2004; 50: 1640–9. <https://doi.org/10.1373/clinchem.2004.033811>
35. Vlassara H, Brownlee M, Cerami A. Recognition and uptake of human diabetic peripheral nerve myelin by macrophages. Diabetes 1985; 34: 553–7. <https://doi.org/10.2337/diab.34.6.553>
36. Witztum JL, Steinberg D. Role of oxidized low density lipoproteins in atherosclerosis. J Clin Invest 1991; 88: 1785–92. <https://doi.org/10.1172/JCI115499> <PubMed>
37. Yudkin JS, Cooper MB, Gould BJ, Oughton J. Glycosylation and cross-linkage of cardiac myosin in diabetic subjects: A post-mortem study. Diabetes Medicine 1988; 5: 338–42. <https://doi.org/10.1111/j.1464-5491.1988.tb01001.x>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive