Acta Med. 2006, 49: 3-11
https://doi.org/10.14712/18059694.2017.102
Protein Biotoxins of Military Significance
References
1. J Mol Biol 1993; 230:673–4.
< MD, Fairweather N, Charles IG, Emsley P, Isaacs NW, MacDermott: Crystallographic characterization of tetanus toxin fragment. C. https://doi.org/10.1006/jmbi.1993.1181>
2. Biochem J 1980; 185:203–10.
< L, Zamboni M, Montanaro L, Sperti S, Stirpe F, Purification and properties of different forms of modeccin, the toxin of Adenia digitata. Separation of subunits with inhibitory and lectin activity. https://doi.org/10.1042/bj1850203>
<PubMed>
3. Toxicon 2000; 38:1759–7.
< S, Mohamed ZA, Wang J, Lehmann VK, Carmichael WW, Rinehart KL, Isolation and characterization of microcystins from a river nile strain of oscillatoria tenuis Agardh ex Gomont. https://doi.org/10.1016/S0041-0101(00)00105-7>
4. Int J Food Microbiol 2002; 74:195–202.
< S, Granum PE, Clostridium perfringens and foodborne infections. https://doi.org/10.1016/S0168-1605(01)00680-8>
5. Curr Drug Targets 2000; 1: 219–35.
< FJ, Prorok M. Conantokins: inhibitors of ion flow through the N-methyl- D-aspartate receptor channels. https://doi.org/10.2174/1389450003349218>
6. Eur J Biochem 2004; 271:108–17.
< A, Di Maro A, Monti MM, Stirpe F, Parente A. Volkensin from Adenia volkensii Harms (kilyambiti plant), a type 2 ribosome-inactivating protein. https://doi.org/10.1046/j.1432-1033.2003.03909.x>
7. FEBS Lett 1992; 309:115–8.
< YL, Chow LP, Tsugita A, Lin JY. The complete primary structure of abrina B chain. https://doi.org/10.1016/0014-5793(92)81076-X>
8. Semin Neurol 2004; 24:155–63.
< M. Botulism: update and review. https://doi.org/10.1055/s-2004-830901>
9. FEMS Microbiol Let. 2003; 228:159–66.
< RP, Lee SY, Tesh VL. Shiga toxins and apoptosis. https://doi.org/10.1016/S0378-1097(03)00761-4>
10. Clark K. The Chemical Weapons Convention: Chemical and Toxin Warfare Agents and Disarmament. Royal Military College of Science, Cranfield University, August 1997.
11. Toxicon 1998; 36:953–62.
< RM. The toxicology of microcystins. https://doi.org/10.1016/S0041-0101(97)00102-5>
12. Mol Membr Biol 2004; 21:77–92.
< L, Hirst TR. Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (Review). https://doi.org/10.1080/09687680410001663267>
13. Comp Immunol Microbiol Infect Dis 2003; 26:145–56.
< G, Fiorentini C, Matarrese P, Falzano L, Cardines R, Mastrantonio P, Payne DW, Titball RW. Evidence for cytoskeletal changes secondary to plasma membrane functional alterations in the in vitro cell response to Clostridium perfringens epsilon-toxin. https://doi.org/10.1016/S0147-9571(02)00052-8>
14. J Biol Chem 1980; 255:1252–8.
K, Gill DM. Cholera toxin activation of adenylate cyclase. Roles of nucleoside triphosphates and a macromolecular factor in the ADP ribosylation of the GTP-dependent regulatory component.
15. Lancet 1997; 349:1672.
< D, Andresen D. Conus geographus envenomation. https://doi.org/10.1016/S0140-6736(05)62639-6>
16. Pharmacol Ther 1982; 19:55–106.
< JH, Arbuthnott JP. Toxins of Staphylococcus aureus. https://doi.org/10.1016/0163-7258(82)90042-0>
17. Biochem J 1978; 174:491–6.
< A, Barbieri L, Lorenzoni E, Montanaro L, Sperti S, Bonetti E. Modeccin, the toxin of Adenia digitata. Purification, toxicity and inhibition of protein synthesis in vitro. https://doi.org/10.1042/bj1740491>
<PubMed>
18. Microbiol Rev 1982; 46: 86–94.
DM. Bacterial toxins: a table of lethal amounts.
19. Semin Thromb Hemost 1997; 23:281–93.
< N, Sutor AH, Zimmerhackl LB, Brandis M. Hemolytic uremic syndromes in childhood. https://doi.org/10.1055/s-2007-996101>
20. J Infect Dis 1986; 154:522–4.
< WR, Damm MA, Anderson JD, et al. Further evidence associating hemolytic- uremic syndrome with infection by Verotoxin-producing Escherichia coli 0157:H7. https://doi.org/10.1093/infdis/154.3.522>
21. Am J Med Sci 2002; 323:326–40.
< RA, Brown BR, Hutchins JB et al. Microbiological, biological, and chemical weapons of warfare and terrorism. https://doi.org/10.1097/00000441-200206000-00005>
22. J Neurol Neurosurg Psychiatry 2001; 71:62.
< LF. Emil Adolph von Behring (1854–1917) and Shibasaburo Kitasato (1852–1931). https://doi.org/10.1136/jnnp.71.1.62>
<PubMed>
23. Biochim Biophys Acta 2004; 1701:1–14.
< MR, Lord JM. Cytotoxic ribosome-inactivating lectins from plants. https://doi.org/10.1016/j.bbapap.2004.06.004>
24. J Biol Chem. 1977; 252:194–8.
TB, Zwisler O, Wiegandt H. Structure of tetanus toxin. II. Toxin binding to ganglioside.
25. J Biol Chem 1991; 266:17195–200.
A, Pohl M, Bhakdi S. Staphylococcus aureus alpha-toxin. Dual mechanism of binding to target cells.
26. J Infect Dis 2000; 181, Suppl 1:156–67.
< RK: Biology and molecular epidemiology of diphtheria toxin and the tox gene. https://doi.org/10.1086/315554>
27. Mol Biotechnol 2004; 26:117–22.
< MA. Infection by Shiga toxin-producing Escherichia coli: an overview. https://doi.org/10.1385/MB:26:2:117>
28. J Biol Chem 1982; 257:12148–52.
S, Hagmann J, Fishman PH, Chang PP, Moss J. Mechanism of action of cholera toxin on intact cells. Generation of A1 peptide and activation of adenylate cyclase.
29. Proteins 1991; 10:251–9.
< BJ, Collins EJ, Robertus JD. Structure of ricin A-chain at 2.5 A. https://doi.org/10.1002/prot.340100309>
30. Biosci Biotechnol Biochem 1993; 57:166–9.
< M, Sumizawa T, Funatsu G: The complete amino acid sequences of the B-chains of abrin-a and abrin-b, toxic proteins from the seeds of Abrus precatorius. https://doi.org/10.1271/bbb.57.166>
31. Biochem Biophys Res Commun 1999; 257:418–24.
< R, Eschenburg S, Perbandt M et al. Crystal structure of mistletoe lectin I from Viscum album. https://doi.org/10.1006/bbrc.1999.0470>
32. IUBMB Life 2004; 56:89–93.
< RJ. Conotoxins as selective inhibitors of neuronal ion channels, receptors and transporters. https://doi.org/10.1080/15216540410001668055>
33. FASEB J 1994; 8:201–8.
< JM, Roberts LM, Robertus JD. Ricin: structure, mode of action, and some current applications. https://doi.org/10.1096/fasebj.8.2.8119491>
34. Toxicon 1974; 12:279–85.
< DK, Freer JH, Arbuthnott JP, Mollby R, Wadstrom T. Consequences of sphingomyelin degradation in erythrocyte ghost membranes by staphylococcal beta-toxin (sphingomyelinase C). https://doi.org/10.1016/0041-0101(74)90070-1>
35. Kontakt 2004; 6(1): 43–51.
J, Krejčí V, Patočka J. Cyanotoxins and their effect on human health (Article in Czech).
36. J Mol Biol 1998; 282:1043–59.
< EA, Kuhn P, Sarfaty S, Erbe JL, Holmes RK, Hol WG. The 1.25 A resolution refinement of the cholera toxin B-pentamer: evidence of peptide backbone strain at the receptor-binding site. https://doi.org/10.1006/jmbi.1998.2076>
37. Protein Sci 1994; 3:166–75.
< EA, Sarfaty S, van den Akker F, L’Hoir C, Martial JA, Hol WG. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. https://doi.org/10.1002/pro.5560030202>
<PubMed>
38. J Biol Chem 1987; 262:5398–403.
W, Villafranca JE, Monzingo AF et al. The three-dimensional structure of ricin at 2.8 A.
39. Proc Natl Acad Sci USA 1994; 91:7530–3.
< KN, Wool IG. Analysis of the contribution of an amphiphilic alpha-helix to the structure and to the function of ricin A chain. https://doi.org/10.1073/pnas.91.16.7530>
<PubMed>
40. Curr Topics Microbiol Immunol 1992; 180:65–94.
AD, Tesh VL, Donohue-Rolfe A, et al. Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis.
41. Biochim Biophys Acta 2003; 1613:79–86.
< S, Oda M, Nagahama M, Sakurai J. Clostridium perfringens alpha-toxin-induced hemolysis of horse erythrocytes is dependent on Ca2+ uptake. https://doi.org/10.1016/S0005-2736(03)00140-8>
42. Tanpakushitsu Kakusan Koso 2001; 46, Suppl l4:449–54.
Y, Matsunaga K. Chemical structures and the mechanism of action of peptide toxins from cone shells (Article in Japanese).
43. Methods Enzymol 1982; 83:357–62.
< S, Haylett T, Sandvig K. The toxic lectin modeccin. https://doi.org/10.1016/0076-6879(82)83030-9>
44. Toxicon 2001; 39:1723–8.
< S, Kozlov JV: Ricin. https://doi.org/10.1016/S0041-0101(01)00158-1>
45. J Biol Chem 1976; 251:3977–84.
S, Pihl A. Kinetics of binding of the toxic lectins abrin and ricin to surface receptors of human cells.
46. J Supramol Struct 1978; 9:15–25.
< S, Sandvig K, Eiklid K, Pihl A. Properties and action mechanism of the toxic lectin modeccin: interaction with cell lines resistant to modeccin, abrin, and ricin. https://doi.org/10.1002/jss.400090103>
47. Toxicon 2004; 44:361–70.
< S. The history of ricin, abrin and related toxins. https://doi.org/10.1016/j.toxicon.2004.05.003>
48. ASA Newsletter 2001; 85:205–8.
J. Abrin and ricin – two dangerous poisonous proteins.
49. ASA Newsletter 2002; 88:14–9.
J, Špliňo M. Botulinum toxin: from poison to medicinal agent.
50. Acta Medica (Hradec Kralove) 2005; 48:23–8.
< J, Špliňo M, Měrka V. Botulism and bioterrorism: How serious is this problem? https://doi.org/10.14712/18059694.2018.24>
51. ASA Newsletter 2002; 89:16–24.
J, Středa L. Brief review of natural nonprotein neurotoxins.
52. J Appl Biomed 2003; 1:141–7.
J, Středa L. Plant toxic proteins and their current significance for warfare and medicine.
53. Acta Medica (Hradec Kralove) 2001; 44:69–75.
J. The toxins of cyanobacteria.
54. Voj Zdrav Listy 1998; 67:166–8.
J: Toxicological characteristic of ricin (Article in Czech).
55. Cell Microbiol. 2003; 5:155–64.
< L, Gibert M, Gourch A, Bens M, Vandewalle A, Popoff MR. Clostridium perfringens epsilon toxin rapidly decreases membrane barrier permeability of polarized MDCK cells. https://doi.org/10.1046/j.1462-5822.2003.00262.x>
56. Biochem Biophys Res Commun 1977; 79:1176–83.
< K, Haylett T, Sandvig K, Olsnes S. Modeccin – a plant toxin inhibiting protein synthesis. https://doi.org/10.1016/0006-291X(77)91130-5>
57. Ann Pharmacother 2003; 37:127–31.
< RF, Nahata MC. Management of botulism. https://doi.org/10.1345/aph.1C034>
58. Proteins 1991; 10:260–9.
< E, Robertus JD. Structure of ricin B-chain at 2.5 A resolution. https://doi.org/10.1002/prot.340100310>
59. Kidney Int 2001; 60:1026–36.
< DI, Kohan DE. Effect of shigatoxin-1 on arachidonic acid release by human glomerular epithelial cells. https://doi.org/10.1046/j.1523-1755.2001.0600031026.x>
60. Science 1972; 177:949–59.
< N, Lis H. Cell-agglutinating and sugar-specific proteins. https://doi.org/10.1126/science.177.4053.949>
61. J Okla State Med Assoc 2003; 96:73–6.
LN, Greenfield RA. Biological toxins as potential agents of bioterrorism.
62. Rev Physiol Biochem Pharmacol 2004; 152:183–204.
< JG, Fisher DJ, Sayeed S, Chakrabarti G, McClane BA. The enteric toxins of Clostridium perfringens. https://doi.org/10.1007/s10254-004-0036-2>
63. Toxicon 2004; 44:371–83.
< F. Ribosome-inactivating proteins. https://doi.org/10.1016/j.toxicon.2004.05.004>
64. Toxicon 1988; 26:55–65.
< M, Blomqvist L. Staphylococcal alpha toxin—recent advances. https://doi.org/10.1016/0041-0101(88)90137-7>
65. Trends Biochem Sci 2002; 27:552–8.
< K, Chaddock JA, Acharya KR. Botulinum and tetanus neurotoxins: structure, function and therapeutic utility. https://doi.org/10.1016/S0968-0004(02)02177-1>
66. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2000; 32:201–5.
KY, Xu Q. Lectins and Toxins.
67. Respir Care Clin N Am 2004; 10:111–22.
< M, Fishbain JT. Aerosolized biologic toxins as agents of warfare and terrorism. https://doi.org/10.1016/S1078-5337(03)00054-6>