Acta Med. 2005, 48: 127-135

https://doi.org/10.14712/18059694.2018.40

The Fate of Iron in The Organism and Its Regulatory Pathways

Přemysl Mladěnkaa, Radomír Hrdinaa, Mojmír Hübla, Tomáš Šimůnekb

aCharles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Pharmacology and Toxicology, Hradec Králové, Czech Republic
bCharles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Hradec Králové, Czech Republic

Received April 1, 2005
Accepted July 1, 2005

References

1. Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 2000; 275(26):19906–12. <https://doi.org/10.1074/jbc.M000713200>
2. Abdallah FB, El Hage Chahine JM. Transferrins: iron release from lactoferrin. J Mol Biol 2000; 303(2):255–66. <https://doi.org/10.1006/jmbi.2000.4101>
3. Anderson GJ. Control of iron absorption. J Gastroenterol Hepatol 1996; 11(11):1030–2. <https://doi.org/10.1111/j.1440-1746.1996.tb00029.x>
4. Anderson GJ. Non-transferrin-bound iron and cellular toxicity. J Gastroenterol Hepatol 1999; 14(2):105–8. <https://doi.org/10.1046/j.1440-1746.1999.01828.x>
5. Anderson GJ, Frazer DM, Wilkins SJ et al. Relationship between intestinal irontransporter expression, hepatic hepcidin levels and the control of iron absorption. Biochem Soc Trans 2002; 30(4):724–6. <https://doi.org/10.1042/bst0300724>
6. Andrews NC. Disorders of iron metabolism. N Engl J Med 1999; 341(26): 1986–95. Erratum in: N Engl J Med 2000;342(5):364. <https://doi.org/10.1056/NEJM199912233412607>
7. Aziz N, Munro HN. Iron regulates ferritin mRNA translation through a segment of its 5’ untranslated region. Proc Natl Acad Sci U S A 1987; 84(23):8478–82. <https://doi.org/10.1073/pnas.84.23.8478> <PubMed>
8. Beinert H. Iron-sulphur clusters: agents of electron transfer and storage, and direct participants in enzymic reactions. Tenth Keilin memorial lecture. Biochem Soc Trans 1986; 14(3):527–33. <https://doi.org/10.1042/bst0140527>
9. Beinert H, Kennedy MC. 19th Sir Hans Krebs lecture. Engineering of protein bound iron-sulfur clusters. A tool for the study of protein and cluster chemistry and mechanism of iron-sulfur enzymes. Eur J Biochem 1989; 186(1–2):5–15. <https://doi.org/10.1111/j.1432-1033.1989.tb15170.x>
10. Berczi A, Sizensky JA, Crane FL, Faulk WP. Diferric transferrin reduction by K562 cells. A critical study. Biochim Biophys Acta 1991; 1073(3):562–70. <https://doi.org/10.1016/0304-4165(91)90231-5>
11. Bettany AJ, Eisenstein RS, Munro HN. Mutagenesis of the iron-regulatory element further defines a role for RNA secondary structure in the regulation of ferritin and transferrin receptor expression. J Biol Chem 1992; 267(23):16531–7.
12. Beutler E, Gelbart T, Lee P, Trevino R, Fernandez MA, Fairbanks VF. Molecular characterization of a case of atransferrinemia. Blood 2000; 96(13):4071–4.
13. Bhasker CR, Burgiel G, Neupert B, Emery-Goodman A, Kuhn LC, May BK. The putative iron-responsive element in the human erythroid 5–aminolevulinate synthase mRNA mediates translational control. J Biol Chem 1993; 268(17): 12699–705.
14. Bradley JL, Blake JC, Chamberlain S, Thomas PK, Cooper JM, Schapira AH. Clinical, biochemical and molecular genetic correlations in Friedreich’s ataxia. Hum Mol Genet 2000; 9(2):275–82. <https://doi.org/10.1093/hmg/9.2.275>
15. Britigan BE, Serody JS, Cohen MS. The role of lactoferrin as an anti-inflammatory molecule. Adv Exp Med Biol 1994; 357:143–56. <https://doi.org/10.1007/978-1-4615-2548-6_14>
16. Brown NM, Kennedy MC, Antholine WE, Eisenstein RS, Walden WE. Detection of a [3Fe-4S] cluster intermediate of cytosolic aconitase in yeast expressing iron regulatory protein 1. Insights into the mechanism of Fe-S cluster cycling. J Biol Chem 2002; 277(9):7246–54. <https://doi.org/10.1074/jbc.M110282200>
17. Calzolari A, Deaglio S, Sposi NM et al. Transferrin receptor 2 protein is not expressed in normal erythroid cells. Biochem J 2004; 381(Pt 3):629–34. <https://doi.org/10.1042/BJ20040230> <PubMed>
18. Camaschella C, Roetto A, Cali A et al. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat Genet 2000; 25(1):14–5. <https://doi.org/10.1038/75534>
19. Casey JL, Hentze MW, Koeller DM et al. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science 1988; 240(4854):924–8. <https://doi.org/10.1126/science.2452485>
20. Chen H, Attieh ZK, Su T et al. Hephaestin is a ferroxidase that maintains partial activity in sex-linked anemia mice. Blood 2004; 103(10):3933–9. <https://doi.org/10.1182/blood-2003-09-3139>
21. Dandekar T, Stripecke R, Gray NK et al. Identification of a novel iron-responsive element in murine and human erythroid delta-aminolevulinic acid synthase mRNA. EMBO J 1991; 10(7):1903–9. <https://doi.org/10.1002/j.1460-2075.1991.tb07716.x> <PubMed>
22. Donovan A, Andrews NC. The molecular regulation of iron metabolism. Hematol J 2004; 5(5):373–80. <https://doi.org/10.1038/sj.thj.6200540>
23. Donovan A, Brownlie A, Zhou Y et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 2000; 403(6771): 776–81. <https://doi.org/10.1038/35001596>
24. Eisenstein RS. Discovery of the ceruloplasmin homologue hephaestin: new insight into the copper/iron connection. Nutr Rev 2000; 58(1):22–6. <https://doi.org/10.1111/j.1753-4887.2000.tb01821.x>
25. Eisenstein RS, Tuazon PT, Schalinske KL, Anderson SA, Traugh JA. Iron-responsive element-binding protein. Phosphorylation by protein kinase C. J Biol Chem 1993; 268(36):27363–70.
26. Feder JN, Tsuchihashi Z, Irrinki A, Lee VK, Mapa FA, Morikang E, Prass CE, Starnes SM, Wolff RK, Parkkila S, Sly WS, Schatzman RC. The hemochromatosis founder mutation in HLA-H disrupts beta2–microglobulin interaction and cell surface expression. J Biol Chem 1997; 272(22):14025–8. <https://doi.org/10.1074/jbc.272.22.14025>
27. Fillebeen C, Chahine D, Caltagirone A, Segal P, Pantopoulos K. A phosphomimetic mutation at Ser-138 renders iron regulatory protein 1 sensitive to iron-dependent degradation. Mol Cell Biol 2003; 23(19):6973–81. <https://doi.org/10.1128/MCB.23.19.6973-6981.2003> <PubMed>
28. Fleming MD, Trenor CC 3rd, Su MA et al. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 1997; 16(4): 383–6. <https://doi.org/10.1038/ng0897-383>
29. Fleming RE, Ahmann JR, Migas MC et al. Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosis. Proc Natl Acad Sci U S A 2002; 99(16):10653–8. <https://doi.org/10.1073/pnas.162360699> <PubMed>
30. Gaber BP, Aisen P. Is divalent iron bound to transferrin? Biochim Biophys Acta 1970; 221(2):228–33. <https://doi.org/10.1016/0005-2795(70)90262-X>
31. Gray NK, Hentze MW. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and e-alas mRNAs. EMBO J 1994; 13(16): 3882–91. <https://doi.org/10.1002/j.1460-2075.1994.tb06699.x> <PubMed>
32. Griffiths WJ, Cox TM. Co-localization of the mammalian hemochromatosis gene product (HFE) and a newly identified transferrin receptor (TfR2) in intestinal tissue and cells. J Histochem Cytochem 2003; 51(5):613–24. <https://doi.org/10.1177/002215540305100507>
33. Grootveld M, Bell JD, Halliwell B, Aruoma OI, Bomford A, Sadler PJ. Non-transferrin- bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy. J Biol Chem 1989; 264(8):4417–22.
34. Gunshin H, Mackenzie B, Berger UV et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997; 388(6641): 482–8. <https://doi.org/10.1038/41343>
35. Guo B, Yu Y, Leibold EA. Iron regulates cytoplasmic levels of a novel iron-responsive element-binding protein without aconitase activity. J Biol Chem 1994; 269(39):24252–60.
36. Harris ZL, Durley AP, Man TK, Gitlin JD. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci U S A 1999; 96(19):10812–7. <https://doi.org/10.1073/pnas.96.19.10812> <PubMed>
37. Henderson BR, Menotti E, Bonnard C, Kuhn LC. Optimal sequence and structure of iron-responsive elements. Selection of RNA stem-loops with high affinity for iron regulatory factor. J Biol Chem 1994; 269(26):17481–9.
38. Henderson BR, Seiser C, Kuhn LC. Characterization of a second RNA-binding protein in rodents with specificity for iron-responsive elements. J Biol Chem 1993; 268(36):27327–34.
39. Hentze MW, Kuhn LC. Molecular control of vertebrate iron metabolism: mRNAbased regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A 1996; 93(16):8175–82. <https://doi.org/10.1073/pnas.93.16.8175> <PubMed>
40. Iancu TC. Ferritin and hemosiderin in pathological tissues. Electron Microsc Rev 1992; 5(2):209–29. <https://doi.org/10.1016/0892-0354(92)90011-E>
41. Jacobs A, Worwood M. Ferritin in serum. Clinical and biochemical implications. N Engl J Med 1975; 292(18):951–6. <https://doi.org/10.1056/NEJM197505012921805>
42. Juang HH. Modulation of iron on mitochondrial aconitase expression in human prostatic carcinoma cells. Mol Cell Biochem 2004; 265(1–2):185–94. <https://doi.org/10.1023/B:MCBI.0000044395.59739.1f>
43. Kawabata H, Germain RS, Vuong PT, Nakamaki T, Said JW, Koeffler HP. Transferrin receptor 2–alpha supports cell growth both in iron-chelated cultured cells and in vivo. J Biol Chem 2000; 275(22):16618–25. <https://doi.org/10.1074/jbc.M908846199>
44. Kawabata H, Yang R, Hirama T et al. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J Biol Chem 1999; 274(30):20826–32. <https://doi.org/10.1074/jbc.274.30.20826>
45. Ke Y, Wu J, Leibold EA, Walden WE, Theil EC. Loops and bulge/loops in ironresponsive element isoforms influence iron regulatory protein binding. Finetuning of mRNA regulation? J Biol Chem 1998; 273(37):23637–40. <https://doi.org/10.1074/jbc.273.37.23637>
46. Klausner RD, Rouault TA. A double life: cytosolic aconitase as a regulatory RNA binding protein. Mol Biol Cell 1993; 4(1):1–5. <https://doi.org/10.1091/mbc.4.1.1> <PubMed>
47. Kohler SA, Henderson BR, Kuhn LC. Succinate dehydrogenase b mRNA of Drosophila melanogaster has a functional iron-responsive element in its 5’-untranslated region. J Biol Chem 1995; 270(51):30781–6. <https://doi.org/10.1074/jbc.270.51.30781>
48. Kozyraki R, Fyfe J, Verroust PJ et al. Megalin-dependent cubilin-mediated endocytosis is a major pathway for the apical uptake of transferrin in polarized epithelia. Proc Natl Acad Sci U S A 2001; 98(22):12491–6. <https://doi.org/10.1073/pnas.211291398> <PubMed>
49. Laing LG, Hall KB. A model of the iron responsive element RNA hairpin loop structure determined from NMR and thermodynamic data. Biochemistry 1996; 35(42):13586–96. <https://doi.org/10.1021/bi961310q>
50. Le NT, Richardson DR. Ferroportin1: a new iron export molecule? Int J Biochem Cell Biol 2002; 34(2):103–8. <https://doi.org/10.1016/S1357-2725(01)00104-2>
51. Lebron JA, Bennett MJ, Vaughn DE et al. Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with transferrin receptor. Cell 1998; 93(1):111–23. <https://doi.org/10.1016/S0092-8674(00)81151-4>
52. Lee GR, Nacht S, Lukens JN, Cartwright GE. Iron metabolism in copper-deficient swine. J Clin Invest 1968; 47(9):2058–69. <https://doi.org/10.1172/JCI105891> <PubMed>
53. Legrand D, Elass E, Pierce A, Mazurier J. Lactoferrin and host defence: an overview of its immuno-modulating and anti-inflammatory properties. Biometals 2004; 17(3):225–9. <https://doi.org/10.1023/B:BIOM.0000027696.48707.42>
54. Leibold EA, Laudano A, Yu Y. Structural requirements of iron-responsive elements for binding of the protein involved in both transferrin receptor and ferritin mRNA post-transcriptional regulation. Nucleic Acids Res 1990; 18(7):1819–24. <https://doi.org/10.1093/nar/18.7.1819> <PubMed>
55. Levy JE, Jin O, Fujiwara Y, Kuo F, Andrews NC. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat Genet 1999; 21(4):396–9. <https://doi.org/10.1038/7727>
56. Martins R, Picanco I, Fonseca A et al. The role of HFE mutations on iron metabolism in beta-thalassemia carriers. J Hum Genet 2004; 49(12):651–5. <https://doi.org/10.1007/s10038-004-0202-z>
57. McKie AT, Latunde-Dada GO, Miret S et al. Molecular evidence for the role of a ferric reductase in iron transport. Biochem Soc Trans 2002; 30(4):722–4. <https://doi.org/10.1042/bst0300722>
58. McKie AT, Marciani P, Rolfs A et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 2000; 5(2):299–309. <https://doi.org/10.1016/S1097-2765(00)80425-6>
59. Melefors O, Goossen B, Johansson HE, Stripecke R, Gray NK, Hentze MW. Translational control of 5–aminolevulinate synthase mRNA by iron-responsive elements in erythroid cells. J Biol Chem 1993; 268(8):5974–8.
60. Metz-Boutigue MH, Jolles J, Mazurier J, Schoentgen F, Legrand D, Spik G, Montreuil J, Jolles P. Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Eur J Biochem 1984; 145(3):659–76. <https://doi.org/10.1111/j.1432-1033.1984.tb08607.x>
61. Muhlenhoff U, Richhardt N, Ristow M, Kispal G, Lill R. The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum Mol Genet 2002; 11(17):2025–36. <https://doi.org/10.1093/hmg/11.17.2025>
62. Nicolas G, Bennoun M, Porteu A et al. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci U S A 2002; 99(7): 4596–601. <https://doi.org/10.1073/pnas.072632499> <PubMed>
63. Nicolas G, Chauvet C, Viatte L et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 2002; 110(7):1037–44. <https://doi.org/10.1172/JCI0215686>
64. Oexle H, Gnaiger E, Weiss G. Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation. Biochim Biophys Acta 1999; 1413(3):99–107. <https://doi.org/10.1016/S0005-2728(99)00088-2>
65. O’Halloran TV. Transition metals in control of gene expression. Science 1993; 261(5122):715–25. <https://doi.org/10.1126/science.8342038>
66. Osaki S, Johnson DA, Frieden E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J Biol Chem 1966; 241(12):2746–51.
67. Papanikolaou G, Samuels ME, Ludwig EH et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet 2004; 36(1):77–82. <https://doi.org/10.1038/ng1274>
68. Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001; 276(11):7806–10. <https://doi.org/10.1074/jbc.M008922200>
69. Peters TJ, Seymour CA. Acid hydrolase activities and lysosomal integrity in liver biopsies from patients with iron overload. Clin Sci Mol Med 1976; 50(1):75–8.
70. Radisky DC, Babcock MC, Kaplan J. The yeast frataxin homologue mediates mitochondrial iron efflux. Evidence for a mitochondrial iron cycle. J Biol Chem 1999; 274(8):4497–9. <https://doi.org/10.1074/jbc.274.8.4497>
71. Raja KB, Simpson RJ, Peters TJ. Investigation of a role for reduction in ferric iron uptake by mouse duodenum. Biochim Biophys Acta 1992; 1135(2):141–6. <https://doi.org/10.1016/0167-4889(92)90129-Y>
72. Richardson DR. Mysteries of the transferrin-transferrin receptor 1 interaction uncovered. Cell 2004; 116(4):483–5. <https://doi.org/10.1016/S0092-8674(04)00165-5>
73. Samaniego F, Chin J, Iwai K, Rouault TA, Klausner RD. Molecular characterization of a second iron-responsive element binding protein, iron regulatory protein 2. Structure, function, and post-translational regulation. J Biol Chem 1994; 269(49):30904–10.
74. Santos M, Schilham MW, Rademakers LH, Marx JJ, de Sousa M, Clevers H. Defective iron homeostasis in beta 2–microglobulin knockout mice recapitulates hereditary hemochromatosis in man. J Exp Med 1996; 184(5):1975–85. <https://doi.org/10.1084/jem.184.5.1975> <PubMed>
75. Schalinske KL, Chen OS, Eisenstein RS. Iron differentially stimulates translation of mitochondrial aconitase and ferritin mRNAs in mammalian cells. Implications for iron regulatory proteins as regulators of mitochondrial citrate utilization. J Biol Chem 1998; 273(6):3740–6. <https://doi.org/10.1074/jbc.273.6.3740>
76. Singer TP, Johnson MK. The prosthetic groups of succinate dehydrogenase: 30 years from discovery to identification. FEBS Lett 1985; 190(2):189–98. <https://doi.org/10.1016/0014-5793(85)81282-5>
77. Sun IL, Navas P, Crane FL, Morre DJ, Low H. NADH diferric transferrin reductase in liver plasma membrane. J Biol Chem 1987; 262(33):15915–21.
78. Thorstensen K, Aisen P. Release of iron from diferric transferrin in the presence of rat liver plasma membranes: no evidence of a plasma membrane diferric transferrin reductase. Biochim Biophys Acta 1990; 1052(1):29–35. <https://doi.org/10.1016/0167-4889(90)90053-G>
79. Valenti P, Berlutti F, Conte MP, Longhi C, Seganti L. Lactoferrin functions: current status and perspectives. J Clin Gastroenterol 2004; 38(6 Suppl):S127–9. <https://doi.org/10.1097/01.mcg.0000128941.46881.33>
80. von Darl M, Harrison PM, Bottke W. cDNA cloning and deduced amino acid sequence of two ferritins: soma ferritin and yolk ferritin, from the snail Lymnaea stagnalis L. Eur J Biochem 1994; 222(2):353–66. <https://doi.org/10.1111/j.1432-1033.1994.tb18874.x>
81. Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 1999; 21(2):195–9. <https://doi.org/10.1038/5979>
82. Waheed A, Parkkila S, Zhou XY et al. Hereditary hemochromatosis: effects of C282Y and H63D mutations on association with beta2–microglobulin, intracellular processing, and cell surface expression of the HFE protein in COS-7 cells. Proc Natl Acad Sci U S A 1997; 94(23):12384–9. <https://doi.org/10.1073/pnas.94.23.12384> <PubMed>
83. Waheed A, Parkkila S, Saarnio J et al. Association of HFE protein with transferrin receptor in crypt enterocytes of human duodenum. Proc Natl Acad Sci U S A 1999; 96(4):1579–84. <https://doi.org/10.1073/pnas.96.4.1579> <PubMed>
84. Weinstein DA, Roy CN, Fleming MD, Loda MF, Wolfsdorf JI, Andrews NC. Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood 2002; 100(10):3776–81. <https://doi.org/10.1182/blood-2002-04-1260>
85. Wright TL, Lake JR. Mechanisms of transport of nontransferrin-bound iron in basolateral and canalicular rat liver plasma membrane vesicles. Hepatology 1990; 12(3 Pt 1):498–504. <https://doi.org/10.1002/hep.1840120309>
86. Xu H, Jin J, DeFelice LJ, Andrews NC, Clapham DE. A spontaneous, recurrent mutation in divalent metal transporter-1 exposes a calcium entry pathway. PLoS Biol 2004; 2(3):E50. <https://doi.org/10.1371/journal.pbio.0020050> <PubMed>
87. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 2004; 5(11):863–73. <https://doi.org/10.1038/nrn1537>
88. Zoller H, Pietrangelo A, Vogel W, Weiss G. Duodenal metal-transporter (DMT- 1, NRAMP-2) expression in patients with hereditary haemochromatosis. Lancet 1999; 353(9170):2120–3. <https://doi.org/10.1016/S0140-6736(98)11179-0>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive