Acta Med. 2005, 48: 127-135
https://doi.org/10.14712/18059694.2018.40
The Fate of Iron in The Organism and Its Regulatory Pathways
References
1. J Biol Chem 2000; 275(26):19906–12.
< S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. https://doi.org/10.1074/jbc.M000713200>
2. J Mol Biol 2000; 303(2):255–66.
< FB, El Hage Chahine JM. Transferrins: iron release from lactoferrin. https://doi.org/10.1006/jmbi.2000.4101>
3. J Gastroenterol Hepatol 1996; 11(11):1030–2.
< GJ. Control of iron absorption. https://doi.org/10.1111/j.1440-1746.1996.tb00029.x>
4. J Gastroenterol Hepatol 1999; 14(2):105–8.
< GJ. Non-transferrin-bound iron and cellular toxicity. https://doi.org/10.1046/j.1440-1746.1999.01828.x>
5. Biochem Soc Trans 2002; 30(4):724–6.
< GJ, Frazer DM, Wilkins SJ et al. Relationship between intestinal irontransporter expression, hepatic hepcidin levels and the control of iron absorption. https://doi.org/10.1042/bst0300724>
6. N Engl J Med 1999; 341(26): 1986–95. Erratum in: N Engl J Med 2000;342(5):364.
< NC. Disorders of iron metabolism. https://doi.org/10.1056/NEJM199912233412607>
7. Proc Natl Acad Sci U S A 1987; 84(23):8478–82.
< N, Munro HN. Iron regulates ferritin mRNA translation through a segment of its 5’ untranslated region. https://doi.org/10.1073/pnas.84.23.8478>
<PubMed>
8. Biochem Soc Trans 1986; 14(3):527–33.
< H. Iron-sulphur clusters: agents of electron transfer and storage, and direct participants in enzymic reactions. Tenth Keilin memorial lecture. https://doi.org/10.1042/bst0140527>
9. Eur J Biochem 1989; 186(1–2):5–15.
< H, Kennedy MC. 19th Sir Hans Krebs lecture. Engineering of protein bound iron-sulfur clusters. A tool for the study of protein and cluster chemistry and mechanism of iron-sulfur enzymes. https://doi.org/10.1111/j.1432-1033.1989.tb15170.x>
10. Biochim Biophys Acta 1991; 1073(3):562–70.
< A, Sizensky JA, Crane FL, Faulk WP. Diferric transferrin reduction by K562 cells. A critical study. https://doi.org/10.1016/0304-4165(91)90231-5>
11. J Biol Chem 1992; 267(23):16531–7.
AJ, Eisenstein RS, Munro HN. Mutagenesis of the iron-regulatory element further defines a role for RNA secondary structure in the regulation of ferritin and transferrin receptor expression.
12. Blood 2000; 96(13):4071–4.
E, Gelbart T, Lee P, Trevino R, Fernandez MA, Fairbanks VF. Molecular characterization of a case of atransferrinemia.
13. J Biol Chem 1993; 268(17): 12699–705.
CR, Burgiel G, Neupert B, Emery-Goodman A, Kuhn LC, May BK. The putative iron-responsive element in the human erythroid 5–aminolevulinate synthase mRNA mediates translational control.
14. Hum Mol Genet 2000; 9(2):275–82.
< JL, Blake JC, Chamberlain S, Thomas PK, Cooper JM, Schapira AH. Clinical, biochemical and molecular genetic correlations in Friedreich’s ataxia. https://doi.org/10.1093/hmg/9.2.275>
15. Adv Exp Med Biol 1994; 357:143–56.
< BE, Serody JS, Cohen MS. The role of lactoferrin as an anti-inflammatory molecule. https://doi.org/10.1007/978-1-4615-2548-6_14>
16. J Biol Chem 2002; 277(9):7246–54.
< NM, Kennedy MC, Antholine WE, Eisenstein RS, Walden WE. Detection of a [3Fe-4S] cluster intermediate of cytosolic aconitase in yeast expressing iron regulatory protein 1. Insights into the mechanism of Fe-S cluster cycling. https://doi.org/10.1074/jbc.M110282200>
17. Biochem J 2004; 381(Pt 3):629–34.
< A, Deaglio S, Sposi NM et al. Transferrin receptor 2 protein is not expressed in normal erythroid cells. https://doi.org/10.1042/BJ20040230>
<PubMed>
18. Nat Genet 2000; 25(1):14–5.
< C, Roetto A, Cali A et al. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. https://doi.org/10.1038/75534>
19. Science 1988; 240(4854):924–8.
< JL, Hentze MW, Koeller DM et al. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. https://doi.org/10.1126/science.2452485>
20. Blood 2004; 103(10):3933–9.
< H, Attieh ZK, Su T et al. Hephaestin is a ferroxidase that maintains partial activity in sex-linked anemia mice. https://doi.org/10.1182/blood-2003-09-3139>
21. EMBO J 1991; 10(7):1903–9.
< T, Stripecke R, Gray NK et al. Identification of a novel iron-responsive element in murine and human erythroid delta-aminolevulinic acid synthase mRNA. https://doi.org/10.1002/j.1460-2075.1991.tb07716.x>
<PubMed>
22. Hematol J 2004; 5(5):373–80.
< A, Andrews NC. The molecular regulation of iron metabolism. https://doi.org/10.1038/sj.thj.6200540>
23. Nature 2000; 403(6771): 776–81.
< A, Brownlie A, Zhou Y et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. https://doi.org/10.1038/35001596>
24. Nutr Rev 2000; 58(1):22–6.
< RS. Discovery of the ceruloplasmin homologue hephaestin: new insight into the copper/iron connection. https://doi.org/10.1111/j.1753-4887.2000.tb01821.x>
25. J Biol Chem 1993; 268(36):27363–70.
RS, Tuazon PT, Schalinske KL, Anderson SA, Traugh JA. Iron-responsive element-binding protein. Phosphorylation by protein kinase C.
26. J Biol Chem 1997; 272(22):14025–8.
< JN, Tsuchihashi Z, Irrinki A, Lee VK, Mapa FA, Morikang E, Prass CE, Starnes SM, Wolff RK, Parkkila S, Sly WS, Schatzman RC. The hemochromatosis founder mutation in HLA-H disrupts beta2–microglobulin interaction and cell surface expression. https://doi.org/10.1074/jbc.272.22.14025>
27. Mol Cell Biol 2003; 23(19):6973–81.
< C, Chahine D, Caltagirone A, Segal P, Pantopoulos K. A phosphomimetic mutation at Ser-138 renders iron regulatory protein 1 sensitive to iron-dependent degradation. https://doi.org/10.1128/MCB.23.19.6973-6981.2003>
<PubMed>
28. Nat Genet 1997; 16(4): 383–6.
< MD, Trenor CC 3rd, Su MA et al. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. https://doi.org/10.1038/ng0897-383>
29. Proc Natl Acad Sci U S A 2002; 99(16):10653–8.
< RE, Ahmann JR, Migas MC et al. Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosis. https://doi.org/10.1073/pnas.162360699>
<PubMed>
30. Biochim Biophys Acta 1970; 221(2):228–33.
< BP, Aisen P. Is divalent iron bound to transferrin? https://doi.org/10.1016/0005-2795(70)90262-X>
31. EMBO J 1994; 13(16): 3882–91.
< NK, Hentze MW. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and e-alas mRNAs. https://doi.org/10.1002/j.1460-2075.1994.tb06699.x>
<PubMed>
32. J Histochem Cytochem 2003; 51(5):613–24.
< WJ, Cox TM. Co-localization of the mammalian hemochromatosis gene product (HFE) and a newly identified transferrin receptor (TfR2) in intestinal tissue and cells. https://doi.org/10.1177/002215540305100507>
33. J Biol Chem 1989; 264(8):4417–22.
M, Bell JD, Halliwell B, Aruoma OI, Bomford A, Sadler PJ. Non-transferrin- bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy.
34. Nature 1997; 388(6641): 482–8.
< H, Mackenzie B, Berger UV et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. https://doi.org/10.1038/41343>
35. J Biol Chem 1994; 269(39):24252–60.
B, Yu Y, Leibold EA. Iron regulates cytoplasmic levels of a novel iron-responsive element-binding protein without aconitase activity.
36. Proc Natl Acad Sci U S A 1999; 96(19):10812–7.
< ZL, Durley AP, Man TK, Gitlin JD. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. https://doi.org/10.1073/pnas.96.19.10812>
<PubMed>
37. J Biol Chem 1994; 269(26):17481–9.
BR, Menotti E, Bonnard C, Kuhn LC. Optimal sequence and structure of iron-responsive elements. Selection of RNA stem-loops with high affinity for iron regulatory factor.
38. J Biol Chem 1993; 268(36):27327–34.
BR, Seiser C, Kuhn LC. Characterization of a second RNA-binding protein in rodents with specificity for iron-responsive elements.
39. Proc Natl Acad Sci U S A 1996; 93(16):8175–82.
< MW, Kuhn LC. Molecular control of vertebrate iron metabolism: mRNAbased regulatory circuits operated by iron, nitric oxide, and oxidative stress. https://doi.org/10.1073/pnas.93.16.8175>
<PubMed>
40. Electron Microsc Rev 1992; 5(2):209–29.
< TC. Ferritin and hemosiderin in pathological tissues. https://doi.org/10.1016/0892-0354(92)90011-E>
41. N Engl J Med 1975; 292(18):951–6.
< A, Worwood M. Ferritin in serum. Clinical and biochemical implications. https://doi.org/10.1056/NEJM197505012921805>
42. Mol Cell Biochem 2004; 265(1–2):185–94.
< HH. Modulation of iron on mitochondrial aconitase expression in human prostatic carcinoma cells. https://doi.org/10.1023/B:MCBI.0000044395.59739.1f>
43. J Biol Chem 2000; 275(22):16618–25.
< H, Germain RS, Vuong PT, Nakamaki T, Said JW, Koeffler HP. Transferrin receptor 2–alpha supports cell growth both in iron-chelated cultured cells and in vivo. https://doi.org/10.1074/jbc.M908846199>
44. J Biol Chem 1999; 274(30):20826–32.
< H, Yang R, Hirama T et al. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. https://doi.org/10.1074/jbc.274.30.20826>
45. J Biol Chem 1998; 273(37):23637–40.
< Y, Wu J, Leibold EA, Walden WE, Theil EC. Loops and bulge/loops in ironresponsive element isoforms influence iron regulatory protein binding. Finetuning of mRNA regulation? https://doi.org/10.1074/jbc.273.37.23637>
46. Mol Biol Cell 1993; 4(1):1–5.
< RD, Rouault TA. A double life: cytosolic aconitase as a regulatory RNA binding protein. https://doi.org/10.1091/mbc.4.1.1>
<PubMed>
47. J Biol Chem 1995; 270(51):30781–6.
< SA, Henderson BR, Kuhn LC. Succinate dehydrogenase b mRNA of Drosophila melanogaster has a functional iron-responsive element in its 5’-untranslated region. https://doi.org/10.1074/jbc.270.51.30781>
48. Proc Natl Acad Sci U S A 2001; 98(22):12491–6.
< R, Fyfe J, Verroust PJ et al. Megalin-dependent cubilin-mediated endocytosis is a major pathway for the apical uptake of transferrin in polarized epithelia. https://doi.org/10.1073/pnas.211291398>
<PubMed>
49. Biochemistry 1996; 35(42):13586–96.
< LG, Hall KB. A model of the iron responsive element RNA hairpin loop structure determined from NMR and thermodynamic data. https://doi.org/10.1021/bi961310q>
50. Int J Biochem Cell Biol 2002; 34(2):103–8.
< NT, Richardson DR. Ferroportin1: a new iron export molecule? https://doi.org/10.1016/S1357-2725(01)00104-2>
51. Cell 1998; 93(1):111–23.
< JA, Bennett MJ, Vaughn DE et al. Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with transferrin receptor. https://doi.org/10.1016/S0092-8674(00)81151-4>
52. J Clin Invest 1968; 47(9):2058–69.
< GR, Nacht S, Lukens JN, Cartwright GE. Iron metabolism in copper-deficient swine. https://doi.org/10.1172/JCI105891>
<PubMed>
53. Biometals 2004; 17(3):225–9.
< D, Elass E, Pierce A, Mazurier J. Lactoferrin and host defence: an overview of its immuno-modulating and anti-inflammatory properties. https://doi.org/10.1023/B:BIOM.0000027696.48707.42>
54. Nucleic Acids Res 1990; 18(7):1819–24.
< EA, Laudano A, Yu Y. Structural requirements of iron-responsive elements for binding of the protein involved in both transferrin receptor and ferritin mRNA post-transcriptional regulation. https://doi.org/10.1093/nar/18.7.1819>
<PubMed>
55. Nat Genet 1999; 21(4):396–9.
< JE, Jin O, Fujiwara Y, Kuo F, Andrews NC. Transferrin receptor is necessary for development of erythrocytes and the nervous system. https://doi.org/10.1038/7727>
56. J Hum Genet 2004; 49(12):651–5.
< R, Picanco I, Fonseca A et al. The role of HFE mutations on iron metabolism in beta-thalassemia carriers. https://doi.org/10.1007/s10038-004-0202-z>
57. Biochem Soc Trans 2002; 30(4):722–4.
< AT, Latunde-Dada GO, Miret S et al. Molecular evidence for the role of a ferric reductase in iron transport. https://doi.org/10.1042/bst0300722>
58. Mol Cell 2000; 5(2):299–309.
< AT, Marciani P, Rolfs A et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. https://doi.org/10.1016/S1097-2765(00)80425-6>
59. J Biol Chem 1993; 268(8):5974–8.
O, Goossen B, Johansson HE, Stripecke R, Gray NK, Hentze MW. Translational control of 5–aminolevulinate synthase mRNA by iron-responsive elements in erythroid cells.
60. Eur J Biochem 1984; 145(3):659–76.
< MH, Jolles J, Mazurier J, Schoentgen F, Legrand D, Spik G, Montreuil J, Jolles P. Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. https://doi.org/10.1111/j.1432-1033.1984.tb08607.x>
61. Hum Mol Genet 2002; 11(17):2025–36.
< U, Richhardt N, Ristow M, Kispal G, Lill R. The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. https://doi.org/10.1093/hmg/11.17.2025>
62. Proc Natl Acad Sci U S A 2002; 99(7): 4596–601.
< G, Bennoun M, Porteu A et al. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. https://doi.org/10.1073/pnas.072632499>
<PubMed>
63. J Clin Invest 2002; 110(7):1037–44.
< G, Chauvet C, Viatte L et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. https://doi.org/10.1172/JCI0215686>
64. Biochim Biophys Acta 1999; 1413(3):99–107.
< H, Gnaiger E, Weiss G. Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation. https://doi.org/10.1016/S0005-2728(99)00088-2>
65. Science 1993; 261(5122):715–25.
< TV. Transition metals in control of gene expression. https://doi.org/10.1126/science.8342038>
66. J Biol Chem 1966; 241(12):2746–51.
S, Johnson DA, Frieden E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum.
67. Nat Genet 2004; 36(1):77–82.
< G, Samuels ME, Ludwig EH et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. https://doi.org/10.1038/ng1274>
68. J Biol Chem 2001; 276(11):7806–10.
< CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. https://doi.org/10.1074/jbc.M008922200>
69. Clin Sci Mol Med 1976; 50(1):75–8.
TJ, Seymour CA. Acid hydrolase activities and lysosomal integrity in liver biopsies from patients with iron overload.
70. J Biol Chem 1999; 274(8):4497–9.
< DC, Babcock MC, Kaplan J. The yeast frataxin homologue mediates mitochondrial iron efflux. Evidence for a mitochondrial iron cycle. https://doi.org/10.1074/jbc.274.8.4497>
71. Biochim Biophys Acta 1992; 1135(2):141–6.
< KB, Simpson RJ, Peters TJ. Investigation of a role for reduction in ferric iron uptake by mouse duodenum. https://doi.org/10.1016/0167-4889(92)90129-Y>
72. Cell 2004; 116(4):483–5.
< DR. Mysteries of the transferrin-transferrin receptor 1 interaction uncovered. https://doi.org/10.1016/S0092-8674(04)00165-5>
73. J Biol Chem 1994; 269(49):30904–10.
F, Chin J, Iwai K, Rouault TA, Klausner RD. Molecular characterization of a second iron-responsive element binding protein, iron regulatory protein 2. Structure, function, and post-translational regulation.
74. J Exp Med 1996; 184(5):1975–85.
< M, Schilham MW, Rademakers LH, Marx JJ, de Sousa M, Clevers H. Defective iron homeostasis in beta 2–microglobulin knockout mice recapitulates hereditary hemochromatosis in man. https://doi.org/10.1084/jem.184.5.1975>
<PubMed>
75. J Biol Chem 1998; 273(6):3740–6.
< KL, Chen OS, Eisenstein RS. Iron differentially stimulates translation of mitochondrial aconitase and ferritin mRNAs in mammalian cells. Implications for iron regulatory proteins as regulators of mitochondrial citrate utilization. https://doi.org/10.1074/jbc.273.6.3740>
76. FEBS Lett 1985; 190(2):189–98.
< TP, Johnson MK. The prosthetic groups of succinate dehydrogenase: 30 years from discovery to identification. https://doi.org/10.1016/0014-5793(85)81282-5>
77. J Biol Chem 1987; 262(33):15915–21.
IL, Navas P, Crane FL, Morre DJ, Low H. NADH diferric transferrin reductase in liver plasma membrane.
78. Biochim Biophys Acta 1990; 1052(1):29–35.
< K, Aisen P. Release of iron from diferric transferrin in the presence of rat liver plasma membranes: no evidence of a plasma membrane diferric transferrin reductase. https://doi.org/10.1016/0167-4889(90)90053-G>
79. J Clin Gastroenterol 2004; 38(6 Suppl):S127–9.
< P, Berlutti F, Conte MP, Longhi C, Seganti L. Lactoferrin functions: current status and perspectives. https://doi.org/10.1097/01.mcg.0000128941.46881.33>
80. Eur J Biochem 1994; 222(2):353–66.
< M, Harrison PM, Bottke W. cDNA cloning and deduced amino acid sequence of two ferritins: soma ferritin and yolk ferritin, from the snail Lymnaea stagnalis L. https://doi.org/10.1111/j.1432-1033.1994.tb18874.x>
81. Nat Genet 1999; 21(2):195–9.
< CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. https://doi.org/10.1038/5979>
82. Proc Natl Acad Sci U S A 1997; 94(23):12384–9.
< A, Parkkila S, Zhou XY et al. Hereditary hemochromatosis: effects of C282Y and H63D mutations on association with beta2–microglobulin, intracellular processing, and cell surface expression of the HFE protein in COS-7 cells. https://doi.org/10.1073/pnas.94.23.12384>
<PubMed>
83. Proc Natl Acad Sci U S A 1999; 96(4):1579–84.
< A, Parkkila S, Saarnio J et al. Association of HFE protein with transferrin receptor in crypt enterocytes of human duodenum. https://doi.org/10.1073/pnas.96.4.1579>
<PubMed>
84. Blood 2002; 100(10):3776–81.
< DA, Roy CN, Fleming MD, Loda MF, Wolfsdorf JI, Andrews NC. Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. https://doi.org/10.1182/blood-2002-04-1260>
85. Hepatology 1990; 12(3 Pt 1):498–504.
< TL, Lake JR. Mechanisms of transport of nontransferrin-bound iron in basolateral and canalicular rat liver plasma membrane vesicles. https://doi.org/10.1002/hep.1840120309>
86. PLoS Biol 2004; 2(3):E50.
< H, Jin J, DeFelice LJ, Andrews NC, Clapham DE. A spontaneous, recurrent mutation in divalent metal transporter-1 exposes a calcium entry pathway. https://doi.org/10.1371/journal.pbio.0020050>
<PubMed>
87. Nat Rev Neurosci 2004; 5(11):863–73.
< L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. https://doi.org/10.1038/nrn1537>
88. Lancet 1999; 353(9170):2120–3.
< H, Pietrangelo A, Vogel W, Weiss G. Duodenal metal-transporter (DMT- 1, NRAMP-2) expression in patients with hereditary haemochromatosis. https://doi.org/10.1016/S0140-6736(98)11179-0>