Acta Med. 2005, 48: 3-21
https://doi.org/10.14712/18059694.2018.23
Complex View on Poisoning with Nerve Agents and Organophosphates
References
1. Clin Chem 1986; 32: 194–7.
MH, George PM, Herron JL, Evans RT. Plasma cholinesterase phenotyping with use of visible-region spectrophotometry.
2. Neuroscience 2002; 113:721–41.
< A, Shetty AK, Abou-Donia MB. Acute exposure to sarin increases blood brain barrier permeability and induces neuropathological changes in the rat brain: dose-response relationship. https://doi.org/10.1016/S0306-4522(02)00176-8>
3. Ann Rev Toxicol 1990; 30: 405–40.
< MB, Lapadula DM. Mechanisms of organophosphorus ester-induced delayed neurotoxicity: Type I and Type II. https://doi.org/10.1146/annurev.pa.30.040190.002201>
4. Drug Chem Toxicol 1997; 20:115–31.
< DR, Harris LW, Chang FCT et al. Antagonism of soman-induced convulsions by midazolam, diazepam, and scopolamine. https://doi.org/10.3109/01480549709003874>
5. Toxicol Lett 2003; 144(Suppl.1):121.
< B, Stojiljkovic MP, Bokonjic D, Maksimovic M, Nedeljkovic M. Effect of memantine on the permeability of the mice blood-brain barrier in soman poisoning. https://doi.org/10.1016/S0378-4274(03)90486-3>
6. Arch Toxicol 2002; 76:470–3.
I, Delibas N, Demirci M, Kiline I, Tamer N. The effects of methidathion on lipid peroxidation and some liver enzymes: role of vitamins E and C.
7. J Toxicol Clin Toxicol 2002; 40:903–10.
< D, Doganay Z, Altintop L et al. Serum acetylcholinesterase and prognosis of acute organophosphate poisoning. https://doi.org/10.1081/CLT-120016962>
8. J Appl Toxicol 1989; 9:331–8.
< K. Predicting toxicokinetic parameters in humans from toxicokinetic data acquired from three small mammalian species. https://doi.org/10.1002/jat.2550090509>
9. Adv Clin Chem 2004; 38:151–216.
< J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis and treatment. https://doi.org/10.1016/S0065-2423(04)38006-6>
10. Brit J Ind Med 1992; 49:648–53.
J. Biological monitoring of exposure to nerve agents.
11. Voj Zdrav Listy 1998; 67:1–6.
J. Cholinesterases and their possible influencing.
12. Inhal Toxicol 2004; 16:497–507.
< J, Sevelova L, Krejcova G et al. Biochemical and behavioral effects of soman vapors in low concentrations. https://doi.org/10.1080/08958370490442430>
13. Acta Med (Hradec Kralove) 1996; 39:101–5.
J. Present views on toxidynamics of soman poisoning.
14. Sbor Ved Pr LFUK (Hradec Kralove) 1991; 34:3–75.
J. The influence of inhibitors and other factors on cholinesterases.
15. Acta Medica (Hradec Kralove) 1997; 40:89–94.
J. Differential inhibition of the brain acetylcholinesterase molecular forms following soman, sarin and VX intoxication in laboratory rats.
16. Voj Zdrav Listy 2001; 70: 18–20.
J. Fusek J. Kassa J. Vachek J. Relationship between toxicity and in vivo anticholinesterase potency in nerve agent poisoning.
17. ASA Newsletter 1994; 94(4):10–1.
J. Fusek J. Vachek J. Treatment and prophylaxis against nerve agent poisoning.
18. J Med Chem Def 2003; 1:1–15.
J. Prophylaxis against organophosphorus poisoning.
19. Clin Chim Acta 1979; 93:93–5.
< J, Hak J. Acetylcholinesterase activity and its molecular forms in rectal tissue in the diagnosis of Hirschprung’s disease. https://doi.org/10.1016/0009-8981(79)90248-1>
20. Bajgar J, Kassa J, Fusek J. Diagnostic validity of different biochemical parameters following organophosphate poisoning. In: Proceedings from the 6th CBW Protection Symposium Stockholm, Sweden, May 10–15 1998, 1998:185–8.
21. Neurochem Int 1995; 26:347–50.
< J, Michalek H, Bisso GM. Differential reactivation by HI-6 in vivo of Paraoxon-inhibited rat brain acetylcholinesterase molecular forms. https://doi.org/10.1016/0197-0186(94)00151-J>
22. Bajgar J. Portmann R. The treatment of intoxication with selected organophosphates and carbamate: comparison of different therapeutic approaches. In: Proceedings CBMTS – Industry II, The First Congress on Chemical and Biological Terrorism. Dubrovnik 21–27 April 2001, 2001:180–4.
23. Arch Intern Med 1994; 154:1433–41.
< PG, van Eeden SF, Moolman JA, Foden AP, Joubert J.R. Organophosphate and carbamate poisoning. https://doi.org/10.1001/archinte.1994.00420130020005>
24. Benschop HP, de Jong LPA. Toxicokinetics of nerve agents. In: Somani SM, Romano JA, eds. Chemical Warfare Agents: Toxicity at Low Levels, Boca Raton: CRC Press, 2001:25–81.
25. Clin Chim Acta 1983; 135:233–7.
< JR, Attack JR. A neural tube defect specific form of acetylcholinesterase in amniotic fluid. https://doi.org/10.1016/0009-8981(83)90140-7>
26. J Appl Toxicol 1998; 18:393–408.
< MA, Kelley AB. Review of health consequences from high-, intermediateand low-level exposure to organophosphorus nerve agents. https://doi.org/10.1002/(SICI)1099-1263(199811/12)18:6<393::AID-JAT528>3.0.CO;2-0>
27. Adv Clin Chem 1981; 22:1–123.
< SS, Kalow W, Pilz W, Whittaker M, Woronick CL. The plasma cholinesterases: a new perspectives. https://doi.org/10.1016/S0065-2423(08)60046-3>
28. Epilepsia 2001; 32:604–15.
< BR, Shih T-M. Anticonvulsant actions of anticholinergic drugs in soman poisoning. https://doi.org/10.1111/j.1528-1157.1991.tb04699.x>
29. Neurotoxicology 1999; 20:871–2.
S, Santos M, Albequerque E. Organophosphate sarin, at low concentrations, inhibits the evoked release of GABA in rat hippocampal slices.
30. Lancet 2002; 359:763–4.
< N, Mackness M, Durrington P. Paraoxonase (PON1) polymorphisms in farmers attributing ill health to sheep dip. https://doi.org/10.1016/S0140-6736(02)07847-9>
31. Clark MG, Saxena A, Anderson SM et al. Behavioral toxicity of purified human serum butyrylcholinesterase in mice. In: The 4th International CB Medical Treatment Symposium, 28 April-3 May 2002, Spiez, Switzerland, 2002:Abstract No 19.
32. J Appl Toxicol 1996; 16:25–33.
< FM, Shih TM, Lenz DE, Madsen JM, Broomfield CA. Hypothesis for synergistic toxicity of organophosphorus poisoning-induced cholinergic crisis and anaphylactoid reactions. https://doi.org/10.1002/(SICI)1099-1263(199601)16:1<25::AID-JAT303>3.0.CO;2-5>
33. Clin Toxicol 1994; 3296:683–96.
A, Willys WO, Liebhaber M. Cholinesterase activity in pregnant women and newborns.
34. Doctor BP, Maxwell DM, Saxena A. Preparation and characterization of bioscavengers for possible use against organophosphate toxicity. In: m-CB Medical Treatment Symposium, 26–30 May 1997, Hradec Kralove, 1997:17–8.
35. Doctor BP, Saxena A, Clark MG et al. Scavenger protection against organophosphates by human serum butyrylcholinesterase. In: The 4th International CB Medical Treatment Symposium, 28 April-3 May 2002, Spiez, Switzerland, 2002: Abstract No 24.
36. Dolezal P, Vachek J, Hrabalek A. In vitro transdermal permeation of a cholinesterase reactivator HI-6. In: Brain RK, Walters KA, eds. Perspectives in percutaneous penetration, Cardiff: STS Publishing, 1988;6A:84.
37. S Afr Med J 1981; 60:227–9.
PW, Muller FO, van Tonder WM. Experience with the intensive care management of organophosphate insecticide poisoning.
38. QJM Monthly J Assoc Phys 2002; 95:275–83.
M, Szinicz L, Eyer P, Beuckley N. Oximes in acute organophosphorus pesticide poisoning: a systematic review of clinical trials.
39. Biochem Pharmacol 1961; 7:88–95.
< GL, Courtney DK, Andres V, Featherstone RM. A new and rapis colorimetric determination of acetylcholinesterase activity. https://doi.org/10.1016/0006-2952(61)90145-9>
40. Fest C, Schmidt KJ. The chemistry of organophosphorus pesticides. Second Revised Edition. Berlin, Heidelberg, New York: Springer-Verlag, 1982.
41. Chem Res Toxicol 2002; 15:582–90.
< A, Hulst AG, Noort D et al. Retrospective detection of exposure to organophosphorus anti-cholinesterases: mass spectrometric analysis of phosphylated human butyrylcholinesterase. https://doi.org/10.1021/tx0101806>
42. Biochem Pharmacol 1965; 14:641–50.
< JH, Harris LW. Dealkylation as a mechanism for ageing for cholinesterase after poisoning with pinacolyl methylphosphonofluoridate. https://doi.org/10.1016/0006-2952(65)90082-1>
43. Prog Neurobiol 1991; 36:257–77.
< SE, Dawson RM. Tacrine: a pharmacological review. https://doi.org/10.1016/0301-0082(91)90002-I>
44. Voj Zdrav Listy 1977; 46:21–7.
J. Tacrin and its analogues, antidotes against psychotomimetics with anticholinergic effect (in Czech).
45. Fusek J, Bajgar J, Vachek J. The prophylactic antidote against nerve paralytic agents – PANPAL. The Meeting of NATO TG 004 Task Group on Prophylaxis and Therapy of Chemical Agents, 11–13 September 2000, The Hague, The Netherlands, 2000.
46. Intern Rev Armed Force Med Serv 1996; 69:291–8.
J, Bajgar J, Herink J, Skopec F. New group of nerve agents: cardiovascular and respiratory effects and blood cholinesterase activity during acute intoxication with 2–dimethylaminoethyl-/dimethylamido)-fluorophosphonate in rats.
47. Gersl V, Bajgar J, Hrdina R et al. Cholinesterases activities in cardiomyopathy (Daunorubicin cardiomyopathy and Dexrazoxan treated Daunorubicin cardiomyopathy in rabbits).Abstracts, XIIIth National Congress of the Turkish Pharmacological Society with International Participation. Antalya, Turkey, November 5–8, 1996:66.
48. Gen Physiol Biophys 1999; 18:335–46.
V, Bajgar J, Hrdina R et al. Cholinesterases in Dexrazoxane-treated Daunorubicin cardiomyopathy in rabbits.
49. Hum Exp Toxicol 1996; 15:834–8.
< V, Bajgar J, Krs O, Hrdina R, Palicka V, Mazurová Y. Changes in cholinesterase activities after Daunorubicin administration to rabbits. https://doi.org/10.1177/096032719601501007>
50. Gersl V, Bajgar J, Palicka V et al. Influence of drugs without anticholinesterase activity: Daunorubicin in rabbits, Proceedings of the 2nd CB Medical Treatment Symposium 7–12 July 1995, Spiez, Switzerland, 1995:214–6.
51. Arch Toxicol 2003; 77:167–72.
< E, Goldman M, Lahat E et al. Nasal midazolam as a novel anticonvulsive treatment against organophosphate-induced seizure activity in the guinea pig. https://doi.org/10.1007/s00204-002-0425-8>
52. Gopalakrishnakone P. Microarray analysis of the human brain cell lines following exposure to a chemical agent, soman. In: Laihia K, ed. Symposium Proceedings NBC 2003, Javaskyla, 2003: 146–7.
53. Biochem Pharmacol 1983; 32:1717–22.
< AL. A theoretical kinetic analysis of the protective action exerted by eserine and other carbamate anticholinesterase against poisoning by organophosphorus compounds. https://doi.org/10.1016/0006-2952(83)90115-6>
54. Neurotoxicology 2001; 22:271–82.
< RC, Milatovic D, Dettbarn WD. Depletion of energy metabolites following acetylcholinesterase inhibitor-induced status epilepticus: protection by antioxidants. https://doi.org/10.1016/S0161-813X(01)00013-4>
55. Biol Plant (Prague) 1981; 23:442–8.
< V, Klozova E, Pitterova K, Turkova V. The screening of the enzyme and isoenzyme patterns in seeds of Alium cepa cultivar Vsetatska. https://doi.org/10.1007/BF02880593>
56. Neurosci Lett 2003; 339:251–3.
< J, Krejcova G, Bajgar J et al. Cyclosporine inhibits acetylcholinesterase activity in selected parts of the rat brain. https://doi.org/10.1016/S0304-3940(03)00016-8>
57. Neurology 1998; 51:1195–7.
< K, Murayama S, Nishiyama K. Distal sensory axonopathy after sarin intoxication. https://doi.org/10.1212/WNL.51.4.1195>
58. Toxicol Lett 1995; 82/83: 459–63.
< MK, Glinn P. Neuropathy target esterase (NTE) and organophosphorus- induced delayed polyneuropathy (OPIDP): recent advances. https://doi.org/10.1016/0378-4274(95)03495-1>
59. Arch. Toxicol. 1985; 58:45–9.
< T, Raveh L, Cohen G et al. Distribution of 3H-soman in mice. https://doi.org/10.1007/BF00292616>
60. Vet Hum Toxicol 2003; 45:50–2.
S, Erdogan A, Aygoren O, Capar S, Tuncok Y. Pesticide poisonings reported to the drug and poison information center in Izmir, Turkey.
61. Public Health 2000; 114:238–48.
< L, Wheeler H, Maclehose R, Murray V. Possible immediate and longterm health effects following exposure to chemical warfare agents. https://doi.org/10.1016/S0033-3506(00)00338-3>
62. Voj Zdrav Listy 1998; 67:15–9.
J. Non-specific effects of organophosphorus inhibitors of cholinesterases.
63. J Toxicol Clin Toxicol 2002; 6:803–16.
< J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. https://doi.org/10.1081/CLT-120015840>
64. Hum Exp Toxicol 1996; 15:383–8.
< J, Bajgar J. The influence of pharmacological pretreatment on efficacy of HI-6 oxime in combination with benactyzine in soman poisoning in rats. https://doi.org/10.1177/096032719601500503>
65. ASA Newslett 1997; 97(4):16–8.
J, Cabal J, Bajgar J, Szinicz L. The choice: HI-6, pralidoxime or obidoxime against nerve agents?
66. Homeostasis 1996; 37:135–6.
J, Frankova K, Hoder P, Patocka J. A comparison of the efficacy of cholinolytics atropine and biperiden (Akineton) in combination with HI-6 on cholinergic and stressogenic effects of soman in rats.
67. Toxicology 2000; 154:67–73.
< J. Fusek J. The influence of of anticholinergic drug selection on the efficacy of antidotal treatment of soman poisoned rats. https://doi.org/10.1016/S0300-483X(00)00322-X>
68. Kassa J, Fusek J, Bajgar J. The importance of PANPAL pretreatment for survival of rats poisoned with supralethal dose of soman. In: m-CB Medical Treatment Symposium, 26–30 May 1997, Hradec Kralove”, Abstracts, 1997:21–2.
69. Pharmacol Toxicol 2001; 88:209–12.
< J. Pecka M. Tichy M et al. Toxic effect of sarin in rats at three months following single or repeated low-level inhalation exposure. https://doi.org/10.1034/j.1600-0773.2001.d01-106.x>
70. ASA Newslett 2001; 84:16–9.
J, Vachek J. Bajgar J, Fusek J. A combination of pyridostigmine with anticholinergic drugs: effective pharmacological pretreatment of soman-poisoned mice.
71. Human Exp Toxicol 2001; 20:169–74.
< S, Hemalatha R, Jeyaseelan L, Oomen A, Zachariah A. Neuroparalysis and oxime efficacy in organophosphate poisoning: a study of butyrylcholinesterase. https://doi.org/10.1191/096032701678766796>
72. Toxicol Lett 2003; 144(Suppl.1):133.
< OA, Vodolazskaya NA, Glukhova LD et al. Early diagnostics of delayed neurotoxicity. https://doi.org/10.1016/S0378-4274(03)90496-6>
73. Env Toxicol Pharmacol 2002; 11:15–21.
< YB, Cheon KC, Hur GH et al. Effects of combinational prophylactics composed of physostigmine and procyclidine on soman induced lethality, seizures and brain injuries. https://doi.org/10.1016/S1382-6689(01)00096-5>
74. Pediatr Surg Int 2002; 18:349–53.
< H, Li Z, Yamataka A et al. Acetylcholinesterase distribution and refractory constipation – a new criterion for diagnosis and management. https://doi.org/10.1007/s00383-002-0776-5>
75. J Appl Toxicol 2001; 21:S53–S5.
< I, Schulz S, Shutz M et al. Combined anticonvulsant treatment of somaninduced seizure. https://doi.org/10.1002/jat.811>
76. Acta Psychiat Scand 1991; 83:441–3.
< H. Riekkinen PJ. Cerebrospinal fluid acetylcholinesterase in patients with dementia associated with schizophrenia or chronic alcoholism. https://doi.org/10.1111/j.1600-0447.1991.tb05572.x>
77. Toxicology 2003; 185:129–39.
< G. Kassa J. Neuroprotective efficacy of pharmacological pretreatment and antidotal treatment in tabun-poisoned rats. https://doi.org/10.1016/S0300-483X(02)00599-1>
78. Tetrahedron Lett 2003; 44:3123–5.
< K, Bielavsky J, Cabal J, Bielavska M. Synthesis of a potential reactivator of acetylcholinesterase – 1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium)propane bromide. https://doi.org/10.1016/S0040-4039(03)00538-0>
79. Bioorg Med Chem Lett 2003; 13:3545–7.
< K, Bielavsky J, Cabal J, Kassa J. Synthesis of a new reactivator of tabun-inhibited acetylcholinesterase. https://doi.org/10.1016/S0960-894X(03)00751-0>
80. J Enzyme Inhib Med Chem 2003; 18:529–35.
< K, Kassa J. A comparison of the ability of a new bispyridinium oxime – 1- (hydroxyiminomethylpyridinium)-4-(carbamoylpyridinium)butane dibromide and currently used oximes to reactivate nerve agent-inhibited rat brain acetylcholinesterase by in vitro methods. https://doi.org/10.1080/14756360310001605552>
81. Die Pharmazie 2004; 59:795–8.
K, Cabal J, Kassa J. A comparison of the efficacy of a bispyridinium oxime – 1,4-bis-(2-hydroxyiminomethylpyridinium) butane dibromide and currently used oximes to reactivate sarin, tabun or cyclosarin-inhibited acetylcholinesterase by in vitro methods.
82. Acta Medica (Hradec Kralove) 2004; 47: 107–9.
K, Sevelová-Bartosova L, Krejcova-Kunesova G. In vitro reactivation of acetylcholinesterase inhibited by cyclosarin using bisquaternary pyridinium aldoximes K005, K033, K027 and K048.
83. Neurotoxicology 2002; 23:1–5.
< G, Baille V, Baubichon D et al. Review of the value of huperzine as pretreatment of organophosphate poisoning. https://doi.org/10.1016/S0161-813X(02)00015-3>
84. Lehre KP, Hassel B. The role of glutamate transporters in soman poisoning. The meeting of NATO TG 004 Task Group on Prophylaxis and Therapy of Chemical Agents.4–7 November 2002, Oslo, Norway, 2002.
85. Immunochem Technol Environ Applic ACS Symp Series 1999; 657:77–86.
< DE, Broomfield AA, Cook LA. Development of immunoassay for detection of chemical warfare agents. https://doi.org/10.1021/bk-1997-0657.ch006>
86. Drug Metab Disp 1988; 16:515–20.
PJ, Scimeca JA, Martin BR. Distribution of /H3/diisopropylfluorophosphate, /H3/soman, /H3/sarin, and their metabolites in mouse brain.
87. Neurotoxicology 2000; 21: 113–26.
O, Masson P. Pesticide and susceptible populations: people with butyrylcholinesterase genetic variants may be at risk.
88. Lotti M. Organophosphorus compounds. In: Spencer PS, Schaumburg HH, eds. Experimental and Clinical Neurotoxicology”, 2nd ed., New York: Oxford University Press, 2000 pp. 898–925.
89. Chem Biol Interact 1999; 119–120:519–24.
< M,. Moretto A. Promotion of organophosphate induced delayed polyneuropathy by certain esterase inhibotors. https://doi.org/10.1016/S0009-2797(99)00066-6>
90. Biochem Pharmacol 2003; 66:387–92.
< CY, Leader H, Radic Z et al. Two possible orientations of the HI-6 molecule in the reactivation of organophosphate/inhibited acetylcholinesterase. https://doi.org/10.1016/S0006-2952(03)00237-5>
91. N Engl J Med 1998; 338:1998–178.
< GM, Mubarik M, Romshoo GJ. Organophosphorus poisoning in the Kashmir Valley, 1994 to 1997. https://doi.org/10.1056/NEJM199804093381520>
92. Biochem Clin Bohemoslov 1983; 12:363–76.
J. Clinical biochemistry of ciliary ducts. Part 2. Tests for bile production and excretion, proteosynthesis, and detoxification (in Czech).
93. Marrs TC, Maynard RL, Sidell FR. Chemical warfare agents. Toxicology and treatment. Chicester, New York, Brisbane, Toronto, Singapore: J. Wiley and Sons., 1996.
94. Progr Neurobiol 1993; 41:31–91.
< J, Pezzementi L, Bon S, Krejci E, Vallette FM. Molecular and cellular biology of cholinesterases. https://doi.org/10.1016/0301-0082(93)90040-Y>
95. Toxicol Appl Pharmacol 1987; 88:66–76.
< DM, Lenz DE, Groff WA, Kaminskis A, Froehlich HL. The effect of blood flow and detoxification on in vivo cholinesterase inhibition by soman in rats. https://doi.org/10.1016/0041-008X(87)90270-5>
96. McDonough JH. Animal models of nerve agent intoxication and treatment of human nerve agent casualties: Identification of key variables for immediate therapy. The meeting of NATO TG 004 Task Group on Prophylaxis and Therapy of Chemical Agents.4–7 November 2002, Oslo, Norway, 2002.
97. Arch Toxicol 1999; 73:473–8.
< JH, McMonagle J, Copeland T, Zoeffel D, Shih TM. Comparative evaluation of benzodiazepines for control of soman-induced seizures. https://doi.org/10.1007/s002040050637>
98. Epilepsia 2000; 38:1–14.
JH, Zoeffel LD, McMonagle J, Copeland TL, Smith CD, Shih TM. Anticonvulsant treatment of nerve agent seizures: anticholinergics versus diazepam in soman-intoxicated guinea pigs.
99. J Appl Toxicol 2001; 21(Suppl.1):S75–S8.
< Y, Cohen G, Chapman S, Alkalai D, Levy A. Prophylaxis against organophosphate poisoning by sustained release of scopolamine and physostigmine. https://doi.org/10.1002/jat.815>
100. Moore DH, Bioscavengers as antidotes for organophosphorus (OP) agents. In: Proceedings of the 2nd CB Medical Treatment Symposium, 7–12 July 1996, Spiez, Switzerland, 1996:330–49.
101. Lancet 1995; 346:290–3.
H, Yanagisawa T, Nakajima M et al. Sarin poisoning in Matsumoto, Japan.
102. Sci Am 2001; 285:20–1.
< G. Better killing through chemistry. https://doi.org/10.1038/scientificamerican1201-20>
103. Toxicol Appl Pharmacol 1997; 144:198–203.
< M, Takatori T, Matsuda Y, Nakajima M, Iwase H, Iwadare K. Definitive evidence for the acute sarin poisoning in diagnosis in the Tokyo subway. https://doi.org/10.1006/taap.1997.8110>
104. Occup Environ Med 1997; 54:697–701.
< T, Sato S, Morita H, Nakajima T. Sarin poisoning of a rescue team in the Matsumoto sarin incident in Japan. https://doi.org/10.1136/oem.54.10.697>
<PubMed>
105. Voj Zdrav Listy 2001; 70:14–7.
D, Benschop HP, de Jong LPA. Methods for retrospective detection of exposure to toxic scheduled chemicals: an overview.
106. Arch Toxicol 1998; 72:671–5.
< D, Hulst AG, Plattenburg DHJM, Polhuijs M, Benschop HP. Quantitative analysis of O-isopropyl methylphosphonic acid in serum samples of Japanese citizens allegedly exposed to sarin: Estimation of internal dose. https://doi.org/10.1007/s002040050559>
107. Toxicol Appl Pharmacol 2002; 184:116–26.
< D, Benschop HP, Black RM. Biomonitoring of exposure to chemical warfare agents: a review. https://doi.org/10.1006/taap.2002.9449>
108. South Med J 1997; 90:587–93.
< S, Yamashina A, Takasu N. Sarin poisoning in Tokyo subway. https://doi.org/10.1097/00007611-199706000-00002>
109. Intern Rev Armed Force Med Serv 1996; 69:97–102.
S, Takase M, Kunagoi F. A clinical experience in Japan Self Defence Force (JSDF) Central Hospital.
110. Acad Emerg Med 1998; 5:618–24.
< T, Suzuki K, Fukuda A. The Tokyo subway sarin attack. Disaster menagement. Part 2: hospital response. https://doi.org/10.1111/j.1553-2712.1998.tb02471.x>
111. ASA Newslett 1999; 99(2):16–9.
J, Kassa J. Huperzine A – prospective prophylactic antidote against organophosphate warfare agent poisoning.
112. Acta Med (Hradec Kralove) 2004; 47: 215–30.
< J, Kuča K, Jun D. Acetylcholinesterase and butyrylcholinesterase – important enzymes of human body. https://doi.org/10.14712/18059694.2018.95>
113. Lancet 1982; 1:174–5.
< RH, Wilson ID, Bober MJ et al. Plasma and erythrocyte acetylcholinesterase in senile dementia of Alzheimer type. https://doi.org/10.1016/S0140-6736(82)90429-9>
114. Toxicol Appl Pharmacol 1997; 146:156–61.
< M, Langenberg JP, Benschop HP. New method for retrospective detection of exposure to organophosphorus anticholinesterases: application to alleged sarin victims of Japanese terrorists. https://doi.org/10.1006/taap.1997.8243>
115. Pediatrics 2003; 112:648–58.
< JS, Newmark J. Nerve attacks on children: diagnosis and management. https://doi.org/10.1542/peds.112.3.648>
116. Neurochem Res 2003; 28:1401–7.
< K, Matsubara K, Shimizu K et al. Pralidoxime iodide (2–PAM) penetrates across the blood-brain barrier. https://doi.org/10.1023/A:1024960819430>
117. Saxena A, Doctor BP, Sun W et al. HuBChE: a bioscavenger for protection against organophosphate chemical warfare agents. US Army Med Dept 2004;PB 8/04/10:23–9.
118. Inhal Toxicol 2004; 16:531–6.
< L, Bajgar J, Saxena A, Doctor BP. Protective effect of equine butyrylcholinsterase in inhalation intoxication of rats with sarin: determination of blood and brain cholinesterase activities. https://doi.org/10.1080/08958370490442511>
119. Acta Med (Hradec Kralove) 2003; 46:109–12.
L, Vachek J. Effect of methoxime combined with anticholinergic, anticonvulsant or anti-HCN drugs in tabun-poisoned mice.
120. Arch Toxicol 1990; 64:663–8.
< S, Kadar T, Cohen G, Chapman S, and Raveh L. Effects of CBDP and MEPQ on the toxicity and distribution of /H3/-soman in mice. https://doi.org/10.1007/BF01974695>
121. Brain Res Bull 1990; 24:429–36.
< TM, Penetar DM, McDonough JH, Romano JA, King JM. Age-related differences in soman toxicity and in blood and regional cholinesterase activity. https://doi.org/10.1016/0361-9230(90)90097-J>
122. Toxicol Appl Pharmacol 2003; 188:69–80.
< TM, Duniho SM, McDonough JH. Control of nerve agent-induced seizures is critical for neuroprotection and survival. https://doi.org/10.1016/S0041-008X(03)00019-X>
123. Toxicol Appl Pharmacol 1990; 103:474–81.
< CL, Eldefrawi AT, Eldefrawi ME. Putative M2 muscarinic receptors of rat heart have high affinity for organophosphorus anticholinesterases. https://doi.org/10.1016/0041-008X(90)90320-T>
124. Voj Zdrav Listy (Suppl) 1997; 66:39.
D, Bajgar J, Krs O, Pospisilova B. Changes of the rat liver microcirculation following sublethal intoxication with soman.
125. Sb Ved Pr LFUK (Hradec Kralove) 1995; 38:115–22.
D, Krs O, Bajgar J, Pospisilova B. Changes in microvascularization of some rat organs following soman poisoning.
126. TIPS 1997; 18:183–5.
Y, Belkin M. The role of excitotoxicity in organophopshporous nerve agents central poisoning.
127. TIBS 1992; 17:353–8.
H, Gnatt A, Loewenstein Y, Neville LF. Excavations into the active sitegorge of cholinesterase.
128. Crit Care 2001; 5:211–5.
< M, Guven M. Intensive care management of organophosphate insecticide poisoning. https://doi.org/10.1186/cc1025>
<PubMed>
129. Sweeney R, Maxwell D. A theoretical expression for the protection associated with stoichiometric and catalytic scavengers in a single compartment model of organophosphorus poisoning. The meeting of NATO TG 004 Task Group on Prophylaxis and Therapy of Chemical Agents.4–7 November 2002, Oslo, Norway. 2002.
130. Drug Chem Toxicol 1988; 11:289–395.
< BG, Anderson DR, Harris LW, Zarbrough LW, Lennox WJ. A comparison of in vivo and in vitro rates of ageing of soman-inhibited erythrocyte acetylcholinesterase in different animal species. https://doi.org/10.3109/01480548809017884>
131. Tonkopii V. Structure and efficiency of carbamates as drugs for prophylaxis against OP poisoning. In: Laihia K, ed. Symposium Proceedings, NBC 2003, Jyvaskyla, 2003: 140–1.
132. Toxicol Lett 2003; 144(Suppl.1):132.
< V. Oxidative stress in the mechanism of organophosphates neurotoxicity. https://doi.org/10.1016/S0378-4274(03)90489-9>
133. Tryphonas LK, Clement J. Soman toxicity: morphogenesis of CNS and heart lesions. In: Poceedings of the CB MTS, CIBIAC, ASA, Batelle, Edgewood USA, NC Lab Spiez, Switzerland, 2.25–2.26,1995.
134. Acta Med (Hradec Kralove) 1996; 39:67–71.
J, Gersl V, Fusek J, Krs O, Skopec F, Bajgar J. Toxicities of O-alkyl S- (2–dialkylaminoethyl) methyl phosphonothiolates (V-compounds).
135. TIPS 1999; 20:438–41.
HPM, Bueters TJH. Protective activity of adenosine receptor antagonists in the treatment of organophosphate poisoning.
136. Van der Schans MJ, Noort D, Fidder A, Degenhardt CEAM, Benschop HP, Langenberg JP. Retrospective detection of exposure to organophosphorus anticholinesterases: fluoride reactivation and mass spectrometric analysis of phosphylated human butyrylcholinesterase. The meeting of NATO TG 004 Task Group on Prophylaxis and Therapy of Chemical Agents.4–7 November 2002, Oslo, Norway, 2002.
137. Toxicol Appl Pharmacol 1993; 122:300–7.
< TR, Ferris DJ, Tilson HA, Mundy WR. Correlation of anticholinesterase activity of a series of organophosphates with their ability to compete with agonist binding to muscarinic receptors. https://doi.org/10.1006/taap.1993.1199>
138. Isr Med Assoc J 2002; 4:573–6.
A, David A, Vidan A, Hourvitz A. Organophosphate poisoning: a multihospital survey.
139. Anaesthesia 1980; 35:174–97.
< M. Plasma cholinesterase variants and the anaesthesist. https://doi.org/10.1111/j.1365-2044.1980.tb03800.x>
140. Clin Chim Acta 1999; 288:73–90.
< F, Mast U, Kiderlen D, Diepold C, Eyer P. Improved determination of acetylcholinesterase activity in human whole blood. https://doi.org/10.1016/S0009-8981(99)00144-8>
141. Arch Toxicol 2002; 76:523–9.
F, Reiter G, Eyer P, Szinicz L. Reactivation kinetics o acetylcholinesterase from different species inhibited by highly toxic organophosphates.
142. J Physiol 1998; 92:317–23.
K, Araki S, Murata K et al. Chronic neurobehavioral and central autonomic nervous system effects in Tokyo subway sarin poisoning.
143. Jap J Toxicol Environ Hlth 1994; 40:486–97.
< T. Toxicological reconsideration of organophosphate poisoning in relation to the possible nerve-gas sarin-poison disaster happened in Matsumoto-city, Nagano. https://doi.org/10.1248/jhs1956.40.486>