Acta Med. 2004, 47: 151-156

https://doi.org/10.14712/18059694.2018.82

Triplex Forming Oligonucleotides – Tool for Gene Targeting

Martin Mojžíšek

Charles University in Prague, Faculty of Medicine in Hradec Králové, Department of Medical Biology and Genetics, Hradec Králové, Czech Republic

Received March 1, 2004
Accepted May 1, 2004

References

1. Arimondo PB, Garestier T, Helene C, Sun JS. Detection of competing DNA structures by thermal gradient gel electrophoresis: from self-association to triple helix formation by (G,A)-containing oligonucleotides. Nucleic Acids Res 2001; 29(4):E15. <https://doi.org/10.1093/nar/29.4.e15> <PubMed>
2. Arya DP, Bruice TC. Triple-helix formation of DNA oligomers with methylthiourea- linked nucleosides (DNmt): a kinetic and thermodynamic analysis. Proc Natl Acad Sci U S A 1999; 96(8):4384–9. <https://doi.org/10.1073/pnas.96.8.4384> <PubMed>
3. Bates PJ, Macaulay VM, McLean MJ et al. Characteristics of triplex-directed photoadduct formation by psoralen-linked oligodeoxynucleotides. Nucleic Acids Res 1995; 23(21):4283–9. <https://doi.org/10.1093/nar/23.21.4283> <PubMed>
4. Behe MJ. An overabundance of long oligopurine tracts occurs in the genome of simple and complex eukaryotes. Nucleic Acids Res 1995; 23(4):689–95. <https://doi.org/10.1093/nar/23.4.689> <PubMed>
5. Biet E, Maurisse R, Dutreix M, Sun_JS. Stimulation of RecA-mediated D-loop formation by oligonucleotide-directed triple-helix formation: guided homologous recombination (GOREC). Biochemistry 2001; 40(6):1779–86. <https://doi.org/10.1021/bi001605a>
6. Blume SW, Lebowitz J, Zacharias W et al. The integral divalent cation within the intermolecular purine*purine. pyrimidine structure: a variable determinant of the potential for and characteristics of the triple helical association. Nucleic Acids Res 1999; 27(2):695–702. <https://doi.org/10.1093/nar/27.2.695> <PubMed>
7. Braasch DA, Corey DR. Novel antisense and peptide nucleic acid strategies for controlling gene expression. Biochemistry 2002; 41(14):4503–10. <https://doi.org/10.1021/bi0122112>
8. Cooney M, Czernuszewicz G, Postel EH, Flint SJ, Hogan ME. Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science 1988; 241(4864):456–9. <https://doi.org/10.1126/science.3293213>
9. Dagle JM, Weeks DL. Positively charged oligonucleotides overcome potassiummediated inhibition of triplex DNA formation. Nucleic Acids Res 1996; 24(11): 2143–9. <https://doi.org/10.1093/nar/24.11.2143> <PubMed>
10. Dagle JM, Weeks DL. Oligonucleotide-based strategies to reduce gene expression. Differentiation 2001; 69(2–3):75–82. <https://doi.org/10.1046/j.1432-0436.2001.690201.x>
11. Datta HJ, Chan PP, Vasquez KM, Gupta RC, Glazer PM. Triplex-induced recombination in human cell-free extracts. Dependence on XPA and HsRad51. J Biol Chem 2001; 276(21):18018–23. <https://doi.org/10.1074/jbc.M011646200>
12. Demidov VV, Potaman VN, Frank_Kamenetskii MD et al. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 1994; 48(6):1310–3. <https://doi.org/10.1016/0006-2952(94)90171-6>
13. Dervan PB, Burli RW. Sequence-specific DNA recognition by polyamides. Curr Opin Chem Biol 1999; 3(6):688–93. <https://doi.org/10.1016/S1367-5931(99)00027-7>
14. Durland RH, Rao TS, Bodepudi V, Seth DM, Jayaraman K, Revankar GR. Azole substituted oligonucleotides promote antiparallel triplex formation at non-homopurine duplex targets. Nucleic Acids Res 1995; 23(4):647–53. <https://doi.org/10.1093/nar/23.4.647> <PubMed>
15. Duval-Valentin G, Takasugi M, Helene C, Sage E. Triple helix-directed psoralen crosslinks are recognized by Uvr(A)BC excinuclease. J Mol Biol 1998; 278(4): 815–25. <https://doi.org/10.1006/jmbi.1998.1728>
16. Duval-Valentin G, Thuong NT, Helene C. Specific inhibition of transcription by triple helix-forming oligonucleotides. Proc Natl Acad Sci U S A 1992; 89(2): 504–8. <https://doi.org/10.1073/pnas.89.2.504> <PubMed>
17. Ebbinghaus SW, Gee JE, Rodu B, Mayfield CA, Sanders G, Miller DM. Triplex formation inhibits HER-2/neu transcription in vitro. J Clin Invest 1993; 92(5): 2433–9. <https://doi.org/10.1172/JCI116850> <PubMed>
18. Egholm M, Buchardt O, Christensen L et al. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 1993; 365(6446):566–8. <https://doi.org/10.1038/365566a0>
19. Escude C, Giovannangeli C, Sun JS et al. Stable triple helices formed by oligonucleotide N3’—>P5’ phosphoramidates inhibit transcription elongation. Proc Natl Acad Sci U S A 1996; 93(9):4365–9. <https://doi.org/10.1073/pnas.93.9.4365> <PubMed>
20. Faruqi AF, Datta HJ, Carroll D, Seidman MM, Glazer PM. Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol Cell Biol 2000; 20(3):990–1000. <https://doi.org/10.1128/MCB.20.3.990-1000.2000>
21. Faruqi AF, Seidman MM, Segal DJ, Carroll D, Glazer PM. Recombination induced by triple-helix-targeted DNA damage in mammalian cells. Mol Cell Biol 1996; 16(12):6820–8. <https://doi.org/10.1128/MCB.16.12.6820>
22. Felsenfeld G. DDR aRA. Formation of a three-stranded poly-nucleotide molecule. J Am Chem Soc 1957: 79:2023–4. <https://doi.org/10.1021/ja01565a074>
23. Francois JC, Saison_Behmoaras T, Helene C. Sequence-specific recognition of the major groove of DNA by oligodeoxynucleotides via triple helix formation. Footprinting studies. Nucleic Acids Res 1988; 16(24):11431–40. <https://doi.org/10.1093/nar/16.24.11431> <PubMed>
24. Gambari R. Peptide-nucleic acids (PNAs): a tool for the development of gene expression modifiers. Curr Pharm Des 2001; 7(17):1839–62. <https://doi.org/10.2174/1381612013397087>
25. Gee JE, Blume S, Snyder RC, Ray R, Miller DM. Triplex formation prevents Sp1 binding to the dihydrofolate reductase promoter. J Biol Chem 1992; 267(16): 11163–7.
26. Havre PA, Glazer PM. Targeted mutagenesis of simian virus 40 DNA mediated by a triple helix-forming oligonucleotide. J Virol 1993; 67(12):7324–31.
27. Havre PA, Gunther EJ, Gasparro FP, Glazer PM. Targeted mutagenesis of DNA using triple helix-forming oligonucleotides linked to psoralen. Proc Natl Acad Sci U S A 1993; 90(16):7879–83. <https://doi.org/10.1073/pnas.90.16.7879> <PubMed>
28. Helene C. The anti-gene strategy: control of gene expression by triplex-formingoligonucleotides. Anticancer Drug Des 1991; 6(6):569–84.
29. Hoogsteen. The structure of crystals containing a hydrogen-bonded complex of 1- methylthymine and 9-methyladenine. Acta Crystallograf 1959; 12:822. <https://doi.org/10.1107/S0365110X59002389>
30. Huang CY, Bi G, Miller PS. Triplex formation by oligonucleotides containing novel deoxycytidine derivatives. Nucleic Acids Res 1996; 24(13):2606–13. <https://doi.org/10.1093/nar/24.13.2606> <PubMed>
31. Chan PP, Lin M, Faruqi AF, Powell J, Seidman MM, Glazer PM. Targeted correction of an episomal gene in mammalian cells by a short DNA fragment tethered to a triplex-forming oligonucleotide. J Biol Chem 1999; 274(17):11541–8. <https://doi.org/10.1074/jbc.274.17.11541>
32. Cho J, Parks ME, Dervan PB. Cyclic polyamides for recognition in the minor groove of DNA. Proc Natl Acad Sci U S A 1995; 92(22):10389–92. <https://doi.org/10.1073/pnas.92.22.10389> <PubMed>
33. Kuhn H, Demidov VV, Nielsen PE, Frank_Kamenetskii MD. An experimental study of mechanism and specificity of peptide nucleic acid (PNA) binding to duplex DNA. J Mol Biol 1999; 286(5):1337–45. <https://doi.org/10.1006/jmbi.1998.2578>
34. Luo Z, Macris MA, Faruqi AF, Glazer PM. High-frequency intrachromosomal gene conversion induced by triplex-forming oligonucleotides microinjected into mouse cells. Proc Natl Acad Sci U S A 2000; 97(16):9003–8. <https://doi.org/10.1073/pnas.160004997> <PubMed>
35. Majumdar A, Puri N, Cuenoud B et al. Cell cycle modulation of gene targeting by a triple helix-forming oligonucleotide. J Biol Chem 2003; 278(13):11072–7. <https://doi.org/10.1074/jbc.M211837200>
36. Mayfield C, Ebbinghaus S, Gee J et al. Triplex formation by the human Ha-ras promoter inhibits Sp1 binding and in vitro transcription. J Biol Chem 1994; 269(27):18232–8.
37. Mergny JL, Sun JS, Rougee M et al. Sequence specificity in triple-helix formation: experimental and theoretical studies of the effect of mismatches on triplex stability. Biochemistry 1991; 30(40):9791–8. <https://doi.org/10.1021/bi00104a031>
38. Miller PS, Bi G, Kipp SA, Fok V, DeLong RK. Triplex formation by a psoralenconjugated oligodeoxyribonucleotide containing the base analog 8-oxo-adenine. Nucleic Acids Res 1996; 24(4):730–6. <https://doi.org/10.1093/nar/24.4.730> <PubMed>
39. Mills M, Arimondo PB, Lacroix L, Garestier T, Klump H, Mergny JL. Chemical modification of the third strand: differential effects on purine and pyrimidine triple helix formation. Biochemistry 2002; 41(1):357–66. <https://doi.org/10.1021/bi011122m>
40. Nielsen PE. Peptide nucleic acids as therapeutic agents. Curr Opin Struct Biol 1999; 9(3):353–7. <https://doi.org/10.1016/S0959-440X(99)80047-5>
41. Nielsen PE. Targeting double stranded DNA with peptide nucleic acid (PNA). Curr Med Chem 2001; 8(5):545–50. <https://doi.org/10.2174/0929867003373373>
42. Panyutin IG, Neumann RD. Sequence-specific DNA double-strand breaks induced by triplex forming 125I labeled oligonucleotides. Nucleic Acids Res 1994; 22(23):4979–82. <https://doi.org/10.1093/nar/22.23.4979> <PubMed>
43. Pesco J, Salmon JM, Vigo J, Viallet P. Mag-indo1 affinity for Ca(2+), compartmentalization and binding to proteins: the challenge of measuring Mg(2+) concentrations in living cells. Anal Biochem 2001; 290(2):221–31. <https://doi.org/10.1006/abio.2000.4983>
44. Plum G. Thermodynamics of oligonucleotide triple helices. Nucleic Acids Sciences 1997; 44:241–256.
45. Postel EH. Modulation of c-myc transcription by triple helix formation. Ann N Y Acad Sci 1992; 660:57–63. <https://doi.org/10.1111/j.1749-6632.1992.tb21057.x>
46. Postel EH, Flint SJ, Kessler DJ, Hogan ME. Evidence that a triplex-forming oligodeoxyribonucleotide binds to the c-myc promoter in HeLa cells, thereby reducing c-myc mRNA levels. Proc Natl Acad Sci U S A 1991; 88(18):8227–31. <https://doi.org/10.1073/pnas.88.18.8227> <PubMed>
47. Rapozzi V, Cogoi S, Spessotto P et al. Antigene effect in K562 cells of a PEGconjugated triplex-forming oligonucleotide targeted to the bcr/abl oncogene. Biochemistry 2002; 41(2):502–10. <https://doi.org/10.1021/bi011314h>
48. Roberts RW, Crothers DM. Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 1992; 258(5087):1463–6. <https://doi.org/10.1126/science.1279808>
49. Singleton SF, Dervan PB. Influence of pH on the equilibrium association constants for oligodeoxyribonucleotide-directed triple helix formation at single DNA sites. Biochemistry 1992; 31(45):10995–1003. <https://doi.org/10.1021/bi00160a008>
50. Smulevitch SV, Simmons CG, Norton JC, Wise TW, Corey DR. Enhancement of strand invasion by oligonucleotides through manipulation of backbone charge. Nat Biotechnol 1996; 14(13):1700–4. <https://doi.org/10.1038/nbt1296-1700>
51. Sugimoto N, Wu P, Hara H, Kawamoto Y. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes. Biochemistry 2001; 40(31): 9396–405. <https://doi.org/10.1021/bi010666l>
52. Thomas RM, Thomas T, Wada M, Sigal LH, Shirahata A, Thomas TJ. Facilitation of the cellular uptake of a triplex-forming oligonucleotide by novel polyamine analogues: structure-activity relationships. Biochemistry 1999; 38(40): 13328–37. <https://doi.org/10.1021/bi991004n>
53. Torigoe H. Thermodynamic and kinetic effects of N3’—>P5’ phosphoramidate modification on pyrimidine motif triplex DNA formation. Biochemistry 2001; 40(4):1063–9. <https://doi.org/10.1021/bi001895v>
54. Torigoe H, Hari Y, Sekiguchi M, Obika S, Imanishi T. 2’-O,4’-C-methylene bridged nucleic acid modification promotes pyrimidine motif triplex DNA formation at physiological pH: thermodynamic and kinetic studies. J Biol Chem 2001; 276(4):2354–60. <https://doi.org/10.1074/jbc.M007783200>
55. Vasquez KM, Dagle JM, Weeks DL, Glazer PM. Chromosome targeting at short polypurine sites by cationic triplex-forming oligonucleotides. J Biol Chem 2001; 276(42):38536–41. <https://doi.org/10.1074/jbc.M101797200>
56. Vasquez KM, Narayanan L, Glazer PM. Specific mutations induced by triplexforming oligonucleotides in mice. Science 2000; 290(5491):530–3. <https://doi.org/10.1126/science.290.5491.530>
57. Vasquez KM, Wang G, Havre PA, Glazer PM. Chromosomal mutations induced by triplex-forming oligonucleotides in mammalian cells. Nucleic Acids Res 1999; 27(4):1176–81. <https://doi.org/10.1093/nar/27.4.1176> <PubMed>
58. Vasquez KM, Wensel TG, Hogan ME, Wilson JH. High-efficiency triple-helix-mediated photo-cross-linking at a targeted site within a selectable mammalian gene. Biochemistry 1996; 35(33):10712–9. <https://doi.org/10.1021/bi960881f>
59. Vasquez KM, Wilson JH. Triplex-directed modification of genes and gene activity. Trends Biochem Sci 1998; 23(1):4–9. <https://doi.org/10.1016/S0968-0004(97)01158-4>
60. Volker J, Klump HH. Electrostatic effects in DNA triple helices. Biochemistry 1994; 33(45):13502–8. <https://doi.org/10.1021/bi00249a039>
61. Wang E, Malek S, Feigon J. Structure of a G.T.A triplet in an intramolecular DNA triplex. Biochemistry 1992; 31(20):4838–46. <https://doi.org/10.1021/bi00135a015>
62. Wang G, Seidman MM, Glazer PM. Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 1996; 271(5250): 802–5. <https://doi.org/10.1126/science.271.5250.802>
63. Wemmer DE, Dervan PB. Targeting the minor groove of DNA. Curr Opin Struct Biol 1997; 7(3):355–61. <https://doi.org/10.1016/S0959-440X(97)80051-6>
64. White S, Szewczyk JW, Turner JM, Baird EE, Dervan PB. Recognition of the four Watson-Crick base pairs in the DNA minor groove by synthetic ligands. Nature 1998; 391(6666):468–71. <https://doi.org/10.1038/35106>
65. Xodo LE, Manzini G, Quadrifoglio F. Formation of stable DNA triple helices within the human bcr promoter at a critical oligopurine target interrupted in the middle by two adjacent pyrimidines. Antisense Nucleic Acid Drug Dev 1998; 8(6):477–88. <https://doi.org/10.1089/oli.1.1998.8.477>
66. Xodo LE, Manzini G, Quadrifoglio F, van der Marel GA, van Boom JH. Effect of 5-methylcytosine on the stability of triple-stranded DNA—a thermodynamic study. Nucleic Acids Res 1991; 19(20):5625–31. <https://doi.org/10.1093/nar/19.20.5625> <PubMed>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive