Acta Med. 2004, 47: 115-118

https://doi.org/10.14712/18059694.2018.75

Cyclodextrines as Functional Agents for Decontamination of the Skin Contaminated by Nerve Agents

Jiří Cabala, Kamil Kučaa, Lucie Ševelová-Bartošováa, Vlastimil Dohnalb

aPurkyně Medical Military Academy, Department of Toxicology, Hradec Králové, Czech Republic
bMasaryk University, Faculty of Science, Department of Analytic Chemistry, Brno, Czech Republic

Received January 1, 2004
Accepted March 1, 2004

References

1. Barr L, Easton CJ, Lee K, Lincoln SF, Simpson JS. Metallocyclodextrin catalysts for hydrolysis of phosphate triesters. Tetrahedron Lett 2002; 43: 7797–800. <https://doi.org/10.1016/S0040-4039(02)01757-4>
2. Breslow R, Dong SD. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem Rev 1998; 98:1997–2012. <https://doi.org/10.1021/cr970011j>
3. Cabal J. Hydrolytic reactions of methylfluorophosphonates with cyclodextrins. Collect Czech Chem Commun 1995; 60:1162–9. <https://doi.org/10.1135/cccc19951162>
4. Cabal J, Kassa J, Severa J. A comparison of the decontamination efficacy of foam-making blends based on cationic and nonionic tensides against organophosphorus compounds determined in vitro and in vivo. Hum Exp Toxicol 2003; 22:507–14. <https://doi.org/10.1191/0960327103ht377oa>
5. Cibulka R, Hampl F, Kotoučová H, Mazáč J, Liška F. Quaternary pyridinium ketoximes – new efficient micellar hydrolytic catalysts. Collect Czech Chem Commun 2000; 65:227–42. <https://doi.org/10.1135/cccc20000227>
6. Flurer ChL, Lin LA, Satzger RD, Wolnik KA. Determination of ephedrine compounds in nutritional supplements by cyclodextrin-modified capillary electrophoresis. J Chrom B 1995; 669:133–9. <https://doi.org/10.1016/0378-4347(95)00020-J>
7. Grigera JR, Caffarena ER, de Rosa S. Computer simulation of the cyclodextrin– phenylalanine complex. Carboh Res 1998; 310:253–9. <https://doi.org/10.1016/S0008-6215(98)00147-5>
8. Gordon RK, Feaster SR, Russel AJ et al. Organophosphate skin decontamination using immobilized enzymes. Chem Biol Interact 1999; 119–120:463–70. <https://doi.org/10.1016/S0009-2797(99)00059-9>
9. Gordon AJ, Ford RA. The chemist’s companion – A handbook of practical data, techniques and references. Wiley: New York, 1972.
10. Ishizuka Y, Fujiwara M, Kanazawa K, Nemoto T, Fujita K, Nakanishi H. Threedimensional structure of the inclusion complex between phloridzin and β-cyclodextrin. Carboh Res 2002; 337:1737–43. <https://doi.org/10.1016/S0008-6215(02)00279-3>
11. Knezevic DL, Tadic V, Cetkovic S. The efficacy of different decontaminants in rats and pigs percutaneously poisoned with organophosphates. Vet Hum Toxicol 1993; 35:403–5.
12. Kotoučová H, Mazáč J, Cibulka R, Hampl F, Liška F. Unusual Course of the p- Nitrophenyl Phosphate Esters Cleavage by 3–Hydroxyiminoalkylpyridinium Salts in Micellar Solutions. Chem Lett 1998; 27:649–50. <https://doi.org/10.1246/cl.1998.649>
13. Kuča K, Bielavský J, Cabal J, Kassa J. Synthesis of a new reactivator of tabun-inhibited acetylcholinesterase. Bioorg Med Chem. Lett 2003; 13:3545–7. <https://doi.org/10.1016/S0960-894X(03)00751-0>
14. Kuča K, Kassa J. A comparison of the ability of a new bispyridinium oxime- 1–(4–hydroxyiminomethylpyridinium)-4–(4–carbamoylpyridinium)butane dibromide and currently used oximes to reactivate nerve agent-inhibited rat brain acetylcholinesterase by in vitro methods. J Enzyme Inhib Med Chem 2003; 18:529–35. <https://doi.org/10.1080/14756360310001605552>
15. Kuča K, Patočka J, Cabal J. Reactivation of organophosphate inhibited acetylcholinesterase activity by α,ω-bis-(4–hydroxyiminomethylpyridinium)alkanes in vitro. J Appl Biomed 2003; 4:207–11.
16. Lai S, Locci E, Piras A, Porcedda S, Lai A, Marongiu B. Imazalil–cyclomaltoheptaose (β-cyclodextrin) inclusion complex: preparation by supercritical carbon dioxide and 13C CPMAS and 1H NMR characterization. Carboh Res 2003; 338:2227–32. <https://doi.org/10.1016/S0008-6215(03)00358-6>
17. Liu Y, Li L, Zhang HI, Liang P, Wang H. Inclusion complexation behavior of dyestuff guest molecules by a bridged bis(cyclomaltoheptaose)[bisβ-cyclodextrin)] with a pyromellitic acid diamide tether. Carboh Res 2003; 338:1751–7. <https://doi.org/10.1016/S0008-6215(03)00268-4>
18. Rizzarelli E, Vecchio G. Metal-complexes of functionalized cyclodextrins as enzyme models and chiral receptors. Coord Chem Rev 1999; 188:343–64. <https://doi.org/10.1016/S0010-8545(99)00059-4>
19. Steitli J. Cyclodextrins and their Inclusion complexes. 1 ed. Budapest 1982.
20. Szejtli L, Osa T. Comprehensive Supramolecular Chemistry, Issue 3. Elsevier, Oxford 1996.
21. Ševelová L, Vachek J. Decontamination efficacy of DESPRACH preparation from stocked supplies of IPB type 80. Zprav Voj Farm 2003; 13:9–12 (in Czech).
22. Van Hooidonk C, Brebart-Hansen JCAE.Stereospecific reaction of isopropyl methylphosphonofluoridate (sarin) with α-cyclodextrin. Rec Trav Chim Pays-Bas 1970; 89:289–99. <https://doi.org/10.1002/recl.19700890309>
23. Weil CS. Tables for convenient calculation of median-effective dose [LD50 or ED50] and instructions in their use. Biometrics 1952; 8:249–63. <https://doi.org/10.2307/3001557>
24. Zajtchuk R, Bellamy RF. Medical aspects of chemical and biological warfare. Office of the Surgeon General, Department of the Army, United states of America, 1997.
25. Zhu W, Wu F, Raushel FM, Vigh G. Capillary electrophoretic separation of the enantiomers of organophosphates with a phosphorus stereogenic center using the sodium salt of octakis(2,3–diacetyl-6–sulfo)-gamma-cyclodextrin as resolving agent. J Chrom A 2000; 89:247–54. <https://doi.org/10.1016/S0021-9673(00)00663-4>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive