Acta Med. 2002, 45: 149-153
https://doi.org/10.14712/18059694.2019.72
The Impairment of Spatial Memory Following Low-Level Sarin Inhalation Exposure and Antidotal Treatment in Rats
References
1. Afifi AA, Azen SP. Statistical analysis and computer oriented approach. 2nd ed. New York: Academic Press, 1979:p.442.
2. Psychopharmacology 1983; 81:315–20.
< GN, Davis BJ, Stoop LC, Stanton ME. Memory and the septo-hippocampal cholinergic system in the rat. https://doi.org/10.1007/BF00427569>
3. J Appl Toxicol 1998; 18:393–408.
< MA, Kelley AB. Review of health consequences from high-, intermediate- and low-level exposure to organophosphorus nerve agents. https://doi.org/10.1002/(SICI)1099-1263(199811/12)18:6<393::AID-JAT528>3.0.CO;2-0>
4. Toxicol Lett 1990; 52:319–29.
< JJ, Heithold DL, Chon SH. Long-term behavioral and learning abnormalities produced by the irreversible cholinesterase inhibitor soman: effect of a standard pretreatment regimen and clonidine. https://doi.org/10.1016/0378-4274(90)90042-K>
5. J Pharmacol Exp Ther 1991; 256:741–50.
PJ, Padilla SS, Ward T, Pope CN, Olszyk VB. Behavioral and neurochemical changes in rats dosed repeatedly with diisopropylfluorophosphate.
6. J Pharmacol Exp Ther 1994; 270:15–25.
PJ, Kelly KL, Ward TR. Repeat inhibition of cholinesterase by chlorpyrifos in rats: behavioral, neurochemical and pharmacological indices of tolerance.
7. J Appl Toxicol 1994; 17:317–31.
< RM. Review of oximes available for treatment of nerve agent poisoning. https://doi.org/10.1002/jat.2550140502>
8. Pharmacol Biochem. Behav 1990; 38:723–9.
< J, Seidler FJ, Slotkin TA. Cholinergic activity in the rat hippocampus, cortex and striatum correlates with locomotor activity. An in vivo microdialysis study. https://doi.org/10.1016/0091-3057(91)90233-R>
9. Biochem Pharmacol 1961; 7:88–95.
< GL, Courtney DK, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. https://doi.org/10.1016/0006-2952(61)90145-9>
10. Pharmacol Biochem Behav 2001; 70:175–9.
< J, Koupilová M, Vachek J. The influence of low-level sarin inhalation exposure on spatial memory in rats. https://doi.org/10.1016/S0091-3057(01)00592-5>
11. Homeostasis 1995; 36:239–40.
M, Patočka J, Herink J. Effects of dalargin and methyl-D-Phe4–dalargin upon spatial orientation of rats.
12. Pharmacol Ther 1993; 58:51–66.
< TC. Organophosphate poisoning. https://doi.org/10.1016/0163-7258(93)90066-M>
13. Toxicol Lett 1988; 40:47–56.
< BE, Costa LG, Murphy SD. Spatial memory impairment and central muscarinic receptor loss following prolonged treatment with organophosphates. https://doi.org/10.1016/0378-4274(88)90182-8>
14. Neurosci Biobehav Rev 1997; 21:559–79.
< JH, Shih TM. Neuropharmacological mechanisms of nerve agentinduced seizure and neuropathology. https://doi.org/10.1016/S0149-7634(96)00050-4>
15. Environ Health Perspect 2001; 109(11): 1169–73.
< Y, Maekawa K, Ogawa Y, Asukai N, Minami M, Omae K. Effects of sarin on the nervous system in rescue team staff members and police officers 3 years after the Tokyo subway sarin attack. https://doi.org/10.1289/ehp.011091169>
<PubMed>
16. Int Rev Arm For Med Ser 1996; 69:97–102.
S, Takase M, Kunagoi F. Sarin poisoning in Japan. A clinical experience in Japan Self Defense Force (JSDF) Central Hospital.
17. Hum Exp Toxicol 1996; 5:957–63.
< T, Hernández AF, Pla A, Villanueva E. Clinical and biochemical changes in greenhouse sprayers chronically exposed to pesticides. https://doi.org/10.1177/096032719601501203>
18. Psychopharmacology 1997; 130:276–84.
< MA, Terry AV, Buccafusco JJ. Chronic, low-level exposure to diisopropylfluorophosphate causes protracted impairment of spatial navigation learning. https://doi.org/10.1007/s002130050240>
19. Neurotoxicol Teratol 1998; 20:115–22.
< MA, Terry AV, Buccafusco JJ. Effects of chronic, low-level organophosphate exposure on delayed recall, discrimination and spatial learning in monkeys and rats. https://doi.org/10.1016/S0892-0362(97)00098-6>
20. Can J Physiol Pharmacol 1989; 67:1183–9.
< CG, Dua AK. Pharmacology of HI-6, an H series oxime. https://doi.org/10.1139/y89-188>
21. Behav Pharmacol 2001; 12:285–92.
< MC, Flores P, Sánchez-Santed F. Effects of chlorpyrifos in the plus-maze model of anxiety. https://doi.org/10.1097/00008877-200107000-00007>
22. Arch Environ Health 1988; 43:38–45.
< EP, Keefe TJ, Mounce LM, Heaton RK, Lewis JA, Burcar PJ. Chronic neurological sequelae of acute organophosphate pesticide poisoning. https://doi.org/10.1080/00039896.1988.9934372>
23. Clin Toxicol 1974; 7:1–17.
< FR. Soman and sarin: clinical manifestation and treatment of accidental poisoning by organophosphates. https://doi.org/10.3109/15563657408987971>
24. TiPS 1997; 18:183–5.
Y, Belkin M. The role of excitotoxicity in organophosphorus nerve agent central poisoning.
25. Lancet 1995; 345:1135–9.
< R, Spurgeon A, Calvert IA. Neuropsychological effects of long-term exposure to organophosphates in sheep dip. https://doi.org/10.1016/S0140-6736(95)90976-1>
26. Taylor P. Anticholinesterase agents. In: Hardman JG, Limbird LE, editors. The Pharmacological basis of therapeutics, 9th ed. New York: McGraw Hill, 1996: p.161–76.
27. Arch Toxicol 1996; 70:779–86.
< HPM, Busker RW, Melchers BPC, Bruijnzeel PLB. Pharmacological effects of oximes: how relevant are they? https://doi.org/10.1007/s002040050340>
28. J. Physiol (Paris) 1998; 92:317–23.
< K, Araki S, Murata K, Nishikitami M, Okumura T, Ishimatsu S, Takasu A. Chronic neurobehavioral and central and autonomic nervous system effects in Tokyo subway sarin poisoning. https://doi.org/10.1016/S0928-4257(98)80040-5>