Acta Med. 2002, 45: 29-32
https://doi.org/10.14712/18059694.2019.53
Troponins in Experimental Studies
References
1. M, Geršl V, Hrdina R, Palička V, Mazurová Y. Contribution to prediction and pathogenesis of daunorubicin-induced cardiomyopathy in rabbits. Exp Clin Cardiol 1998; 3(3):179–83.
2. M, Geršl V, Hrdina R et al. Cardiac troponin T as a marker of myocardial damage caused by antineoplastic drugs in rabbits. J Cancer Res Clin Oncol 1999; 125(5):268–74.
3. FS. The specificity of biochemical markers of cardiac damage: a problem solved. Clin Chem Lab Med 1999; 37(11/12):1085–9.
<https://doi.org/10.1515/CCLM.1999.158>
4. RJ, Dodd DA, Atkinson JB, Oquist N, Olson RD. Contractile failure in chronic doxorubicin-induced cardiomyopathy. J Mol Cell Cardiol 1997; 29(10): 2631–40.
<https://doi.org/10.1006/jmcc.1997.0494>
5. CM. Animal models of drug-induced cardiomyopathy. Comp Biochem Physiol 1984; 79C/1:9–14.
6. V, Hrdina R. Noninvasive polygraphic cardiac changes in daunorubicin – induced cardiomyopathy in rabbits. Sbor Ved Prac LFUK Hradec Králové 1994; 37:49–55.
7. V, Bajgar J, Krs O et al. Changes of some biochemical and hematological parameters following administration of daunorubicin in rabbits. Sbor Ved Prac LFUK Hradec Králové 1995; 38:79–84.
8. CL, Woolley G, Kotsanas G, Gibson WR. Cardiac energetics in daunorubicin- induced cardiomyopathy. J Mol Cell Cardiol 1984; 16:953–62.
<https://doi.org/10.1016/S0022-2828(84)80031-0>
9. M, Kaplan E. Antracycline-induced cardiotoxicity. Oncology 1992; 15:198–204.
10. Holt DW. Pre-clinical application of markers of myocardial damage. In: Kaski JC, Holt DW, eds. Developments in Cardiovascular Medicine. Kluwe Academic Publishers 1998; 205:201–10.
11. BS, Henry MC, Port CD, Rosen E. Preclinical toxicologic evaluation of ICRF-187 in dogs. Cancer Treat Rep 1980; 64:1211–5.
12. G, Tirosh, R, Pinson A, Hershko C. Role of iron in the potentiation of anthracycline cardiotoxicity: identification of heart cell mitochondria as a major site of iron-anthracycline interaction. J Lab Clin Med 1996; 127(3):272–8.
<https://doi.org/10.1016/S0022-2143(96)90095-5>
13. J. Progress in myocardial damage detection: new biochemical markers for clinicians. Crit Rev Clin Lab Sci 1997; 34(1):1–66.
<https://doi.org/10.3109/10408369709038215>
14. NA. Degradation of human cardiac troponin I after myocardial infarction. Biotechnol Appl Biochem 1998; 28:105–11.
15. D, Drzenowski J. Antracycline-induced oxidative stress – its role in the development of cardiac damage. Cancer J 1996; 9:296–303.
16. PJ, Dameron GW, Beck ML et al. Cardiac troponin T is a sensitive, specific biomarker of cardiac injury in laboratory animals. Lab Anim Sci 1997; 47(5):486–95.
17. PJ, Dameron GW, Beck ML, Brandt M. Differential reactivity of cardiac and skeletal muscle from various species in two generations of cardiac troponin immunoassays. Res Vet Sci 1998; 65(2):135–7.
<https://doi.org/10.1016/S0034-5288(98)90164-3>
18. Sinha BK. Cardiovascular Toxicology. Ed. Van Stee EW, New York: Raven Press, 1982.
19. DD, Layard MW, Basa P et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979; 91(5):710–7.
<https://doi.org/10.7326/0003-4819-91-5-710>
20. DD. Phase I trials of dexrazoxane and other potential applications for the agent. Semin Oncol 1998; 91:710–7.
21. LR, Spencer CM. Dexrazoxane. A review of its use as a cardioprotective agent in patients receiving anthracycline-based chemotherapy. Drugs 1998; 56:385–403.
<https://doi.org/10.2165/00003495-199856030-00009>


