Acta Med. 2001, 44: 119-124
https://doi.org/10.14712/18059694.2019.97
New Therapeutic Approaches for the Treatment of Huntington’s Disease
References
1. Neurology 1992; 42: 733-8.
< R, Greenamyre JT. Alternative excitotoxic hypotheses. https://doi.org/10.1212/WNL.42.4.733>
2. J Comp Neurol 1969; 137:433-58.
< J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. https://doi.org/10.1002/cne.901370404>
3. Proc Natl Acad Sci USA 1996; 93:7346-51.
< KD, Panayotatos N, Corcoran TI, Lindsay RM, Wiegan SJ. Ciliary neurotrophic factor protects striatal output neurons in an animal model of Huntington’s disease. https://doi.org/10.1073/pnas.93.14.7346>
<PubMed>
4. Brain 1999; 122:2353-63.
< TC, Weeks RA, Turjanski N et al. Huntington’s disease progression: PET and clinical observations. https://doi.org/10.1093/brain/122.12.2353>
5. Cell Transpl 2000; 9:139-52.
< RE, Svendsen CN. Neural stem cells: from cell biology to cell replacement. https://doi.org/10.1177/096368970000900202>
6. Exp Neurol 2000a; 161(1):194-202.
< A, Bourdet C, Brugieres P et al. Safety and tolerability assessment of intrastriatal neural allografts in five patients with Huntington’s disease. https://doi.org/10.1006/exnr.1999.7239>
7. Hum Gene Ther 2000b; 11(12):1723-9.
< AC, Deglon N, Nguyen JP et al. Neuroprotective gene therapy for Huntington’s disease using a polymer encapsulated BHK cell line engineered to secrete human CNTF. https://doi.org/10.1089/10430340050111377>
8. Hum Molec Genet 1997; 6:1633-7.
< GP, Mangiarini L, Mahal A, Davies SW. Transgenic models of Huntington’s disease. https://doi.org/10.1093/hmg/6.10.1633>
9. Nature 1986; 321:168-71.
< MF, Kowall NW, Ellison DW, Mazurek MF, Schwartz KJ Martin JB. Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. https://doi.org/10.1038/321168a0>
10. J Neurosci 1993; 13(10):4181-92.
< MF, Brouillet E, Jenkins BG et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. https://doi.org/10.1523/JNEUROSCI.13-10-04181.1993>
<PubMed>
11. Ann Neurol 1995; 38:357-66.
< MF. Aging, energy and oxidative stress in neurodegenerative diseases. https://doi.org/10.1002/ana.410380304>
12. Proc Natl Acad Sci 2001; 98(1):3-4.
< MF, Hantraye P. Novel therapies in the research for a cure for Huntington’s disease. https://doi.org/10.1073/pnas.98.1.3>
<PubMed>
13. Acta Physiol Scand Suppl 1983; 522:1-75.
A, Stenevi U, Schmidt RH, Dunnett SB and Gage FH. Intracerebral grafting of neuronal cell suspensions.
14. Nature Neurosci 2000; 3(6):537-44.
< A, Lindvall O. Cell replacement therapies for central nervous system disorders. https://doi.org/10.1038/75705>
15. Neuroscience 1996; 71(3):895-7.
< P, Fricker RA, Nakao N. Paucity of P-zones in striatal grafts prohibit commencement of clinical trials in Huntington’s disease. https://doi.org/10.1016/0306-4522(95)00162-X>
16. Nature 1976; 263(5574):244-6.
< JT, Schwarcz R. Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. https://doi.org/10.1038/263244a0>
17. J Neurosci 1996; 16:6146-56.
< JA, Lopez-Mascaraque L, Valverde F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. https://doi.org/10.1523/JNEUROSCI.16-19-06146.1996>
<PubMed>
18. Eur J Pharmacol 1983; 93(3-4):287-8.
< AW, Robinson RG, Coyle JT, Sanberg P. Reversal of long-term locomotor abnormalities in the kainic acid rat model of Huntington’s disease by day 18 fetal striatal implants. https://doi.org/10.1016/0014-2999(83)90150-4>
19. Exp Neurol 1998; 154(1):31-40.
< SB, Carter RJ, Watts C et al. Striatal transplantation in a transgenic mouse model of Huntington’s disease. https://doi.org/10.1006/exnr.1998.6926>
20. Eagle KS, Kopyov OV. Early postoperative results in ten Huntington’s disease patients following transplantation of foetal striatal tissue. http://www.lib.uchicago.edu/~rd13/hd/early.html 1997;(2).
21. Nature 1997; 386:395-9.
< DF, Winn SR, Hantraye PM et al. Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington’s disease. https://doi.org/10.1038/386395a0>
22. Anat Embryol 1981; 163:275-98.
< JC, Stanfield BB, Cowan WM. Observations on the development of the striatum in mice and rats. https://doi.org/10.1007/BF00315705>
23. Cell Transplant 2000; 9(2):273-8.
< JS, Schumacher JM, Ellias SL et al. Porcine xenografts in Parkinson’s disease and Huntington’s disease patients: preliminary results. https://doi.org/10.1177/096368970000900212>
24. Neurobiol Dis 1997; 4:1–22.
< LJ. Neural precursor cells: applications for the study and repair of the central nervous system. https://doi.org/10.1006/nbdi.1997.0137>
25. N Engl J Med 1992; 327(22):1549-55.
< CR, Breeze RE, Rosenberg NL et al. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. https://doi.org/10.1056/NEJM199211263272202>
26. Ann Neurol 1995; 38(3):379-88.
< TB, Olanow CW, Hauser RA et al. Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. https://doi.org/10.1002/ana.410380307>
27. Freeman TB, Olanow CW, Hauser RA et al. Human fetal tissue transplantation for the treatment of movement disorders. In: Germano IM ed. Neurosurgical Treatment of Movement Disorders. New York: AANS Publications, 1998:177-92.
28. Prog Brain Res 2000a; 127:405-11.
< TB, Hauser RA, Sanberg PR, Saporta S. Neural transplantation for the treatment of Huntington’s disease. https://doi.org/10.1016/S0079-6123(00)27019-2>
29. Proc Natl Acd Sci 2000b; 97(25):13877-82.
< TB. Transplanted fetal striatum in Huntington’s disease: phenotypic development and lack of pathology. https://doi.org/10.1073/pnas.97.25.13877>
<PubMed>
30. Cell Mol Life Sci 1998; 54(9):935-45.
< J, Johansson CB, Lothian C, Lendahl U. Central nervous system stem cells in the embryo and adult. https://doi.org/10.1007/s000180050224>
<PubMed>
31. Nature 1983; 306(5940):234-8.
< JF, Wexler NS, Conneally PM et al. A polymorphic DNA marker generally linked to Huntington’s disease. https://doi.org/10.1038/306234a0>
32. Arch Neurol 1999; 56(2):179-87.
< RA, Freeman TB, Snow BJ et al. Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. https://doi.org/10.1001/archneur.56.2.179>
33. Neurology 2000; 54(Suppl 3):A153.
< RA, Stoessl JA, Eichler SR et al. Pilot evaluation of human fetal striatal transplantation in Huntington’s disease. https://doi.org/10.1212/WNL.54.9.1859>
34. J Neurobiol 1994; 25(11):1418-35.
< F. Neurotrophic factor therapy for nervous system degenerative diseases. https://doi.org/10.1002/neu.480251109>
35. Med Surg Rep 1872; 26:317-21.
G. On chorea.
36. Huntington’s Disease Collaborative Research Group: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72:971-83.
37. Neuroscience 1985; 16:799 – 817.
< O, Brundin P, Gage FH, Björklund A. Neural grafting in a rat model of Huntington’s disease: Progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting. https://doi.org/10.1016/0306-4522(85)90095-8>
38. Exp Neurol 1998; 149(1):97-108.
< OV, Jacques S, Lieberman A, Duma CM, Eagle KS. Safety of intrastriatal neurotransplantation for Huntington’s disease patients. https://doi.org/10.1006/exnr.1997.6685>
39. Trends Neurosci 1987; 10:24-9.
< NW, Ferrante RJ and Martin JB. Pattern of cell loss in Huntington’s disease. https://doi.org/10.1016/0166-2236(87)90120-2>
40. J Neurosci 1996; 16:2027-33.
< HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. https://doi.org/10.1523/JNEUROSCI.16-06-02027.1996>
<PubMed>
41. J Comp Neurol 1997; 384:373-95.
< K, Kostovic I. Transient fetal structure, the gangliothalamic body, connects telencephalic germinal zone with all thalamic regions in the developing human brain. https://doi.org/10.1002/(SICI)1096-9861(19970804)384:3<373::AID-CNE5>3.0.CO;2-0>
42. Neuron 1993; 10:201-12.
< SW, Goldman JE. Both oligodendrocytes and astrocytes develop from progenitors subventricular zone of postnatal rat forebrain. https://doi.org/10.1016/0896-6273(93)90311-E>
43. Science 1990; 247(4942):574-7.
< O, Brundin P, Widner H et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. https://doi.org/10.1126/science.2105529>
44. Science 1994; 264:1145-48.
< C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. https://doi.org/10.1126/science.8178174>
45. Exp Neurol 1997; 145:342 – 60.
< C, Martinez-Serrano A, Cattaneo E, Mc Kay RD, Björklund A. Survival, integration, and differentiation of neural stem cell lines after transplantation to the adult rat striatum. https://doi.org/10.1006/exnr.1997.6503>
46. Curr Opin Neurobiol 1996; 6(5):638-43.
< M.E, Gusella JF: Huntington’s disease: translating a CAG repeal into a pathogenic mechanism. https://doi.org/10.1016/S0959-4388(96)80097-3>
47. Soc Neurosci Abstr 1991; 17:902.
I, Franco-Bourland RE, Cuevas C et al. Fetal neural grafting for the treatment of Huntington’s disease (HD) – report of the first case.
48. Neurol Res 1995; 17(4):312-15.
< I, Franco-Bourland RE, Castrejon H, Cuevas C, Ostrosky-Solis F. Fetal striatal homotransplantation for Huntington’s disease: first two case reports. https://doi.org/10.1080/01616412.1995.11740334>
49. Neuroscience 1997; 76(3):749-61.
< N, Brundin P. Effects of alpha-phenyl-tetra-butyl nitrone on neuronal survival and motor function following intrastriatal injections of quinolinate or 3- nitropropionic acid. https://doi.org/10.1016/S0306-4522(96)00223-0>
50. Neuroscience 1998; 84:867-76.
< M, Björklund A, Campbell K, Turnbull K. Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence . https://doi.org/10.1016/S0306-4522(97)00532-0>
51. Brain 1994; 117(Pt 3): 487-99.
< M, Defer G, N’Guyen JP et al. Bilateral motor improvement and alteration of L-dopa effect in two patients with Parkinson’s disease following intrastriatal transplantation of foetal ventral mesencephalon. https://doi.org/10.1093/brain/117.3.487>
52. Neuroscience 1995; 68(2): 273-85.
< M, Césaro P, Hantraye P. Rationale for intrastriatal grafting of striatal neuroblasts in patients with Huntington’s disease. https://doi.org/10.1016/0306-4522(95)00162-C>
53. Neurosci 1996; 71(3):899-900.
< M, Césaro P, Hantraye P. What is needed versus what would be interesting to know before undertaking neural transplantation in patients with Huntington’s disease. https://doi.org/10.1016/0306-4522(95)00575-7>
54. Cell Transplant 1997; 6(3):203-12.
< LM, Kopyov OV, Lee AJ et al. Neuropsychological functioning following fetal striatal transplantation in Huntington’s chorea: Three case presentations. https://doi.org/10.1177/096368979700600303>
55. Mov Disord 1996; 11(2): 143-50.
< N, Brown R, Craufurd D et al. Core Assessment Program for Intracerebral Transplantation in Huntington’s Disease (CAPIT-HD). https://doi.org/10.1002/mds.870110202>
56. Mov Disord 1999; 140:326-30.
< HD, Koroshetz WJ, Jenkins BG et al. Riluzole therapy in Huntington’s disease. https://doi.org/10.1002/1531-8257(199903)14:2<326::AID-MDS1019>3.0.CO;2-Q>
57. NMR Biomed 1999; 12(4):221-36.
< BD, Hoang TQ, Bluml S et al. In vivo magnetic resonance spectroscopy of human fetal neural transplants. https://doi.org/10.1002/(SICI)1099-1492(199906)12:4<221::AID-NBM582>3.0.CO;2-Q>
58. Sanberg PR, Cesario V, Borlongan KW, Isacson O. Fetal-tissue transplantation for Huntington’s disease: Preclinical studies. In: Freeman TB, Widner H, eds. Cell transplantation for neurological disorders: Toward reconstruction of human central nervous system. Totowa, NJ: Humana Press, 1998:77-93.
59. Neuron 1999; 22: 623-633.
< I, Xu CJ, Juo P, Kakizaka A, Blenis J, Yuan J. Caspase-8 is required for cell death induced by expanded polyglutamine repeats. https://doi.org/10.1016/S0896-6273(00)80716-3>
60. Neurology 2000; 54:1042-50.
< JM, Ellias SA, Palmer EP et al. Transplantation of embryonic porcine mesencephalic tissue in patients with PD. https://doi.org/10.1212/WNL.54.5.1042>
61. Shoulson I. Huntington’s disease. In: McKhann AA, McDonald WI, eds. Diseases of the Nervous System. Clinical Neurobiology. Philadelphia: WB Saunders, 1992:1159-68.
62. N Engl J Med 1992; 327(22):1541-8.
< DD, Robbins RJ, Naftolin F et al. Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease. https://doi.org/10.1056/NEJM199211263272201>
63. Trends Neurosci 1999; 22(8):357-64.
< CN, Smith AG. New prospects for human stem-cell therapy in the nervous system. https://doi.org/10.1016/S0166-2236(99)01428-9>
64. Stereotact Funct Neurosurg 1992; 58(1-4):79-83.
< M, Rattaj M, Molina H, Vojtassak J, Belan V, Ružický E. Stereotactic technique and pathophysiological mechanisms of neurotransplantation in Huntington’s chorea. https://doi.org/10.1159/000098976>
65. J Neuropathol Exp Neurol 1985; 44:559-77.
< JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EPJ. Neuropathological classification of Huntington’s disease. https://doi.org/10.1097/00005072-198511000-00003>
66. Widner H. The Lund transplant program for Parkinson’s disease and patients with MPTP-induced parkinsonism. In: Freeman TB, Widner H, eds. Cell transplantation for neurological disorders: Toward reconstruction of the central nervous system. Totowa, NJ: Humana Press, 1998:1-18.