Acta Med. 2000, 43: 63-68
https://doi.org/10.14712/18059694.2019.115
Apoptosis and Cell Death (Mechanisms, Pharmacology and Promise for the Future)
References
1. Neuron 1995; 15:961-73.
< M, Dypbukt J, Bonfoco E et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. https://doi.org/10.1016/0896-6273(95)90186-8>
2. Am J Pathol 1990; 136:593-608.
M, Morris R, Wyllie A. Apoptosis. The role of the endonuclease.
3. EMBO J 1995; 14:5179-90.
< C, Benedetti M, Schneider C. Microfilament reorganization during apoptosis: the role of Gas2, a possible substrate for ICE-like proteases. https://doi.org/10.1002/j.1460-2075.1995.tb00202.x>
<PubMed>
4. Oncogene 1993; 8:1397-401.
P, Wyllie A, Purdie C et al. Stabilised p53 facilitates aneuploid clonal divergence in colorectal cancer.
5. Nature 1993; 362:849-52.
< A, Purdie C, Harrison D et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. https://doi.org/10.1038/362849a0>
6. Anat Embryol (Berl) 1990; 181:195-213.
< P. Developmental cell death: morphological diversity and multiple mechanisms. https://doi.org/10.1007/BF00174615>
7. Cotran R, Kumar V, Robbins S. Robbins pathologic basis of disease. 5 ed. Philadelphia: WB Saunders, 1994.
8. Daly J, Bertagnolli M, DeCosse J, Morton D. Oncology. In: Schwartz S, Shires G, Spencer F et al., eds. Principles of Surgery. 7 ed. New York: McGraw-Hill, 1999:2162.
9. J Trauma 1999; 46:582-8.
< S, Martin B, Sun L et al. Resuscitation with lactated Ringer’s solution in rats with hemorrhagic shock induces immediate apoptosis. https://doi.org/10.1097/00005373-199904000-00005>
10. Exp Brain Res 1992; 88:91-105.
< J, Bergstedt K, Linden T, Kalimo H, Wieloch T. Ultrastructural changes in the hippocampal CA1 region following transient cerebral ischemia: evidence against programmed cell death. https://doi.org/10.1007/BF02259131>
11. Biochim Biophys Acta 1992; 1133:3275-85.
C, Gregory C, Phipps D et al. Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multiparameter flow cytometry.
12. Nature 1998; 391:43-50.
< M, Sakahira H, Yokoyama H et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. https://doi.org/10.1038/34112>
13. Blood 1998; 92:3090-7.
Z, Thall P, Talpaz M et al. Caspase 2 and caspase 3 protein levels as predictors of survival in acute myelogenous leukemia.
14. Lab Invest 1990; 62:670-9.
J, Kyle M, Coleman J. Mechanisms of cell injury by activated oxygen species.
15. Life Science 1999; 65:1963-7.
< J, Pomfy M, Nováková B, Beneš L. Stobadine protection against ischemiareperfusion induced morphological alteration of cerebral microcirculation in dogs. https://doi.org/10.1016/S0024-3205(99)00456-7>
16. Trends Cell Biol 1999; 8:267-71.
< D, Kroemer G. The central executioners of apoptosis: caspases or mitochondria? https://doi.org/10.1016/S0962-8924(98)01273-2>
17. Oncogene 1997; 15:1573-81.
< T, Marchetti P, Susin S et al. The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. https://doi.org/10.1038/sj.onc.1201324>
18. Cell Biol Toxicol 1998; 14:141-5.
< T, Susin S, Marzo I et al. Mitochondrial permeability transition in apoptosis and necrosis. https://doi.org/10.1023/A:1007486022411>
19. FEBS Lett 1997; 410:373-7.
< S, Dallaporta B, Zamzami N et al. Nitric oxide induces apoptosis via triggering mitochondrial permeability transition. https://doi.org/10.1016/S0014-5793(97)00623-6>
20. Nature 1997; 390:180-4.
< B, Cohen O, Polak-Charcon S et al. DAP kinase links the control of apoptosis to metastasis. https://doi.org/10.1038/36599>
21. Lab Invest 1996; 74:86-107.
J, Cheng W, Reiss K et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats.
22. Br J Cancer 1972; 26:239-57.
< J, Wyllie A, Currie A. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. https://doi.org/10.1038/bjc.1972.33>
<PubMed>
23. Eur J Endocrinol 1998; 138:482-91.
< W, Gallaher B. Hormonal control of programmed cell death/apoptosis. https://doi.org/10.1530/eje.0.1380482>
24. Transplantation 1999; 67:1099-105.
< V, Selzner M, Madden J, Bentley R, Clavien P. Endothelial cell and hepatocyte deaths occur by apoptosis after ischemia-reperfusion injury in the rat liver. https://doi.org/10.1097/00007890-199904270-00003>
25. Science 1997; 278:294-8.
< S, Azuma T, Reinhard C et al. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. https://doi.org/10.1126/science.278.5336.294>
26. Arch Surg 1998; 133:558-67.
< R, MacKay S, Moldawer L. Revisiting the role of tumor necrosis factor alpha and the response to surgical injury and inflammation. https://doi.org/10.1001/archsurg.133.5.558>
27. Biochem Biophys Res Commun 1997; 236:1-9.
< M, Nicotera P. The shape of cell death. https://doi.org/10.1006/bbrc.1997.6890>
28. J Exp Med 1997; 185:1481-6.
< M, Single B, Castoldi A, Kühnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. https://doi.org/10.1084/jem.185.8.1481>
<PubMed>
29. Stroke 1993; 24:2002-8.
< M, Zobrist R, Hatfield M. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. https://doi.org/10.1161/01.STR.24.12.2002>
30. J Insect Physiol 1965a; 11:123-33.
< R, Williams C. Programmed cell death - I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. https://doi.org/10.1016/0022-1910(65)90099-5>
31. J Insect Physiol 1965b; 11:601-10.
< R, Williams C. Programmed cell death. 3. Neural control of the breakdown of the intersegmental muscles of silkmoths. https://doi.org/10.1016/0022-1910(65)90142-3>
32. Am J Pathol 1995; 146:3-15.
G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death.
33. Ann Surg Oncol 1998; 5:287-95.
< M, Sedghinasab M, Knowlton K et al. Flow cytometric measurement of mitochondrial mass and function: a novel method for assessing chemoresistance. https://doi.org/10.1007/BF02303787>
34. J Exp Med 1996; 184:1155-60.
< P, Castedo M, Susin S et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. https://doi.org/10.1084/jem.184.3.1155>
<PubMed>
35. J Biol Chem 1996; 271:28753-6.
< S, Finucane D, Amarante-Mendes G, O’Brien G, Green D. Phosphatidylserine externalization during CD95-induced apoptosis of cells and cytoplasts requires ICE/CED-3 protease activity. https://doi.org/10.1074/jbc.271.46.28753>
36. FEBS Lett 1998; 427:198-202.
< I, Susin S, Petit P et al. Caspases disrupt mitochondrial membrane barrier function. https://doi.org/10.1016/S0014-5793(98)00424-4>
37. Biochem Biophys Res Commun 1997; 239:357-66.
< D, Orrenius S. The role of calcium in the regulation of apoptosis. https://doi.org/10.1006/bbrc.1997.7409>
38. Arch Dis Child Fetal Neonatal Ed 1996; 75:F73-75.
< H, Edwards AD. Hypoxia, ischaemia, and apoptosis. https://doi.org/10.1136/fn.75.2.F73>
39. Biochem Soc Trans 1994; 22:421s.
< H, Yue X, Squier MV, Edwards AD. The relationship between impaired cerebral energy metabolism and apoptosis in the cingulate gyrus of newborn piglets following transient hypoxia-ischaemia. UCL/RPMS Perinatal Brain Research Group. https://doi.org/10.1042/bst022421s>
40. J Biol Chem 1998; 273:19525-31.
< J, Jr, Mu Z, Saido T, Du X. Cleavage of the cytoplasmic domain of the integrin beta3 subunit during endothelial cell apoptosis. https://doi.org/10.1074/jbc.273.31.19525>
41. Eur J Biochem 1998; 252:1-15.
< B, Vayssiere J. Mitochondria and apoptosis. https://doi.org/10.1046/j.1432-1327.1998.2520001.x>
42. Cell Calcium 1998 Feb-Mar 23: 2-3, 173-80 1998;23:173-80.
< P, Orrenius S. The role of calcium in apoptosis. https://doi.org/10.1016/S0143-4160(98)90116-6>
43. Dev Biol 1990; 138:104-13.
< R, Prevette D, Tytell M, Homma S. Naturally occurring and induced neuronal death in the chick embryo in vivo requires protein and RNA synthesis: evidence for the role of cell death genes. https://doi.org/10.1016/0012-1606(90)90180-Q>
44. J Neural Transm Suppl 1994; 43:1-11.
S, Nicotera P. The calcium ion and cell death.
45. FEBS Lett 1998; 426:111-6.
< P, Goubern M, Diolez P et al. Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition. https://doi.org/10.1016/S0014-5793(98)00318-4>
46. J Cell Biol 1976; 68:339-56.
< G, Landmesser L. Ultrastructural differences during embryonic cell death in normal and peripherally deprived ciliary ganglia. https://doi.org/10.1083/jcb.68.2.339>
<PubMed>
47. Folia Morphol Praha 1985; 33:322-7.
M, Maršala J, Bona M. Study of critical damage to the neurons in dog cerebral cortex in the presence of different degrees of ischaemia and after subsequent recirculation.
48. Mol Neurobiol 1997; 15:223-39.
< D, Lai M, Snyder S. Neural roles of immunophilins and their ligands. https://doi.org/10.1007/BF02740635>
49. Nature 1999; 401:168-73.
< S, Aoto M, Eguchi Y et al. Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. https://doi.org/10.1038/43678>
50. Science 1966; 154:604-12.
< J, Jr. Death in embryonic systems. https://doi.org/10.1126/science.154.3749.604>
51. J Clin Invest 1989; 83:865-75.
< J, Wyllie A, Henson J et al. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. https://doi.org/10.1172/JCI113970>
<PubMed>
52. J Cell Biol 1994; 127:15-20.
< K, Walczak H, Dröge W, Krammer P. Cell nucleus and DNA fragmentation are not required for apoptosis. https://doi.org/10.1083/jcb.127.1.15>
<PubMed>
53. Siesjö BK, Kristián T. Cell calcium homeostasis and calcium-related ischemic damage. In: Welch K, Caplan L, Reis D, Siesjö B, Weir B, eds. Primer on Cerebrovascular Diseases. San Diego: Academic Press, 1997:172-8.
54. Eur J Anaesthesiol 1996; 13:247-68.
< BK, Siesjö P. Mechanisms of secondary brain injury. https://doi.org/10.1097/00003643-199605000-00004>
55. Folia Biol (Praha) 1976; 22: 335-42.
M, Cejková M, Matyáová J. The sensitivity of chromatin from thymuses and spleens of irradiated mice to alkaline solutions.
56. FEBS Lett 1998; 423:275-80.
< V. Cytochrome c in the apoptotic and antioxidant cascades. https://doi.org/10.1016/S0014-5793(98)00061-1>
57. Mol Cell Biol 1998; 18:3509-17.
< R, Srivastava A, Korsmeyer S et al. Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase. https://doi.org/10.1128/MCB.18.6.3509>
58. Nature 1999; 397:441-6.
< S, Lorenzo H, Zamzami N et al. Molecular characterization of mitochondrial apoptosis-inducing factor. https://doi.org/10.1038/17135>
59. Biochim Biophys Acta 1998; 1366:151-65.
< S, Zamzami N, Kroemer G. Mitochondria as regulators of apoptosis: doubt no more. https://doi.org/10.1016/S0005-2728(98)00110-8>
60. Dev Biol 1966; 13:77-94.
< J. Requirement for RNA and protein synthesis for induced regression of the tadpole tail in organ culture. https://doi.org/10.1016/0012-1606(66)90050-9>
61. Curr Opin Cell Biol 1992; 4:227-32.
< B, Berezesky I. The role of cytosolic Ca2+ in cell injury, necrosis and apoptosis. https://doi.org/10.1016/0955-0674(92)90037-D>
62. FASEB J 1995; 9:219-28.
< B, Berezesky I. Calcium-mediated cell injury and cell death. https://doi.org/10.1096/fasebj.9.2.7781924>
63. J Cereb Blood Flow Metab 1994; 14:911-23.
< M, Spigelman I, Zhang L et al. Mechanism of action and persistence of neuroprotection by cell-permeant Ca2+ chelators. https://doi.org/10.1038/jcbfm.1994.122>
64. Neuron 1993; 11:221-35.
< M, Wallace M, Spigelman I et al. Cell-permeant Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. https://doi.org/10.1016/0896-6273(93)90180-Y>
65. Neurosci Lett 1996; 213:111-4.
< M, Gill R. Ultrastructural morphological changes are not characteristic of apoptotic cell death following focal cerebral ischaemia in the rat. https://doi.org/10.1016/0304-3940(96)12839-1>
66. Neuroreport 1997; 8:3871-5.
< M, Sirimanne E, Reutelingsperger C et al. Annexin V labels apoptotic neurons following hypoxia-ischemia. https://doi.org/10.1097/00001756-199712220-00007>
67. Acad Emerg Med 1998; 10:1019-29.
< B, Sullivan J. Apoptosis. https://doi.org/10.1111/j.1553-2712.1998.tb02785.x>
68. Arch Toxicol Suppl 1987; 11:3-10.
A. Apoptosis: cell death under homeostatic control.
69. Nature 1994; 369:272-3.
< A. Apoptosis. Death gets a brake. https://doi.org/10.1038/369272a0>
70. Int Rev Cytol 1980; 68:251-306.
< A, Kerr J, Currie A. Cell death: the significance of apoptosis. https://doi.org/10.1016/S0074-7696(08)62312-8>
71. Oncogene 1998; 16:2265-82.
< N, Brenner C, Marzo I, Susin S, Kroemer G. Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. https://doi.org/10.1038/sj.onc.1201989>
72. J Bioenerg Biomembr 1997; 29:185-93.
< N, Hirsch T, Dallaporta B, Petit P, Kroemer G. Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis. https://doi.org/10.1023/A:1022694131572>
73. J Exp Med 1995; 182:367-77.
< N, Marchetti P, Castedo M et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. https://doi.org/10.1084/jem.182.2.367>
<PubMed>
74. Nature 1998; 391:449-50.
< B, Orrenius S, Brustugun O, Doskeland S. Injected cytochrome c induces apoptosis. https://doi.org/10.1038/35060>