Acta Med. 1998, 41: 99-108

https://doi.org/10.14712/18059694.2019.173

Central Cholinergic Nervous System and Cholinergic Agents

Jiří Patočka

Department of Toxicology, Purkyně Military Medical Academy, Hradec Králové, Czech Republic

Received May 1, 1998
Accepted June 1, 1998

References

1. Adrian ED, Feldberg W, Kilby BA. The cholinesterase inhibition action of fluorophosphonates. Br J Pharmacol 1947; 2: 56-8.
2. Aeschlieman JA, Reinert M. Pharmacological action of some analogues of physostigmine. J Pharmacol 1991; 43:413-44.
3. Albrecht J, Gurwitz D, Fisher A et al. Novel muscarinic M1 receptor agonists promote survival of CNS neurons in primary cell culture. Soc Neurosci Abstr 1995; 21:2040.
4. Angevine JB, Jr., Cotman CW. Principles of Neuroanatomy. New York:Oxford.Univ.Press, 1981.
5. Barlow RB. Differences in the stereoselectivity of closely related compounds: A reinvestigation of enantiomers of procyclidine, benzhexol and their metho- and etho-salts. J Pharm Pharmacol 1971; 23:90-7. <https://doi.org/10.1111/j.2042-7158.1971.tb08618.x>
6. Barlow RB, Harrison M, Ison RR et al. Epimeric forms of quaternary derivatives of atropine. J Med Chem 1973; 16:564-6. <https://doi.org/10.1021/jm00263a037>
7. Bartus RT, Dean III, RL, Beer B et al. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982; 217:408-17. <https://doi.org/10.1126/science.7046051>
8. Bebbington A, Brimblecombe RW. Muscarinic receptors in the peripheral and central nervous system. Adv Drug Res 1965; 2:143-72.
9. Bermudez-Rattoni F, Garcia J. The role of hippocampal cholinergic activity in taste-potentiated odor aversion learning. Soc Neurosci Abstr 1984; 10:256.
10. Bolin RR. Psychiatric manifestation of artane toxicity. J Nerv Ment Dis 1960; 131:256-9. <https://doi.org/10.1097/00005053-196009000-00008>
11. Brimblecombe RW, Green DM. The peripheral and central action of some anticholinergic substances. Int J Neuropharm 1968; 7:15-21. <https://doi.org/10.1016/0028-3908(68)90050-6>
12. Brimblecombe RW, Green D, Inch D. A comparison of the stereochemical requirements of cholinergic and anticholinergic drugs. J Pharm Pharmacol 1979; 22:951-3. <https://doi.org/10.1111/j.2042-7158.1970.tb08484.x>
13. Brisson A, Unwin PNT. Quaternary structure of the acetylcholine receptor. Nature 1985; 315:474-7. <https://doi.org/10.1038/315474a0>
14. Brown JH. Atropine, scopolamine and related antimuscarinic drugs. In: Goodman Gilman A, Rall TW, Neis AS et al., eds.: Goodman and Gilmans the Pharmacological Basis of Therapeutics. New York:Pergamon Press, 1990:150-67.
15. Brown DA, Fatherazi S, Garthwaite J. et al. Muscarinic receptors in rat sympathetic ganglia. Br J Pharmacol 1980; 70:577-92. <https://doi.org/10.1111/j.1476-5381.1980.tb09777.x> <PubMed>
16. Bryson HM, Benfield P. Donepezil. Drugs Aging 1997; 10:234-9. <https://doi.org/10.2165/00002512-199710030-00007>
17. Burger A. ed.. Drugs Affecting the Central Nervous System. New York:Marcel Dekker, 1968.
18. Carlyl RL. The mode of action of pyridostigmine on the guinea-pig trachealis muscle. Br J Pharmacol 1963; 21:137-42.
19. Changeus J, Cirqudat J, Dennis M. The nicotinic acetylcholine receptor: Molecular architecture of a ligand-regulated ion channel. TIPS 1987; 8:459-65.
20. Choo LK, Mitchelson F. Comparison of the affinity constants of some muscarinic receptor antagonists with their displacements of [3H]-quinuclidinyl benzilate binding in atrial and ileal longitudinal muscle of the guinea-pig. J Pharm Pharmacol 1985; 37:656-8. <https://doi.org/10.1111/j.2042-7158.1985.tb05106.x>
21. Christie JE, Phil M, Shering A et al.. Physostigmne and arecoline: Effects of intravenous infusions in Alzheimer presenile dementia. Br J Psychiatry 1981; 138:46-50. <https://doi.org/10.1192/bjp.138.1.46>
22. Court JA, Perry EK. Dementia: The neurochemical basis of putative transmitter oriented therapy. Pharmacol Ther 1991; 52:423-43. <https://doi.org/10.1016/0163-7258(91)90035-K>
23. Coyle JT, Price DL, De Jong ML. Alzheimers disease: A disorder of cortical cholinergic inervation. Science 1983; 219:1184-90. <https://doi.org/10.1126/science.6338589>
24. Craig DH, Rosen P. Abuse of antiparkinsonian drugs. Ann Emerg Med 1981; 10:98-100. <https://doi.org/10.1016/S0196-0644(81)80347-2>
25. Crawshow JA, Mullen PE. A study of benzhexol abuse. Br J Psychiatry 1984; 145:300-3. <https://doi.org/10.1192/bjp.145.3.300>
26. Cummings JL, Kaufer D. Neuropsychiatric aspects of Alzheimers disease. The cholinergic hypothesis revisited. Neurology 1996; 47:876-83. <https://doi.org/10.1212/WNL.47.4.876>
27. Dale HH. The action of certain esters of choline and their relation to muscarine. J Pharmacol Exp Ther 1914; 6:147-90.
28. Danielli JE, Moran JF, Triggle DJ. eds. Fundamental Concepts in Drug-Receptor Interaction. New York:Acad. Press, 1970.
29. Das YT, Brown HD, Chattapadhyay SK. Substrate-ligand interactions with acetylcholinesterase and energetics of binding. Gen Pharmacol 1986; 17:715-20. <https://doi.org/10.1016/0306-3623(86)90306-X>
30. Davis KL, Berger PA, eds. Brain Acetylcholine and Neuropsychiatric Disease. New York:Plenum Press, 1979.
31. Denneris ES, Connolly J, Rogers SW et al. Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptors. TIPS 1991; 12:34-40.
32. Dilsaver SC. Antimuscarinic agents as substance of abuse: a review. J Clin Psychopharmacol 1988; 8:14-22.
33. DiMascio A, Sovner RD. Neuroleptic-induced extrapyramidal side effects. A plan for rational treatment. Drug Therapy 1976; 99-103.
34. Drachman DA. Alzheimers Disease: Senile Dementia and Related Disorders. Vol.7. New York:Raven Press, 1978: 141-8.
35. Ehlert FJ, Jenden DJ. The binding of a 2-chloroethylamine derivative of oxotremorine (BM 123) to muscarinic receptors in the rat cerebral cortex. Mol Pharmacol 1985; 28:107-19.
36. Eto M. Organophosphorus Pesticides: Organic and Biological Chemistry. Cleveland:CRC Press, 1974.
37. Fest C, Schmidt KJ. The Chemistry of Organophosphorus Pesticides. Berlin:Springer-Verlag, 1973.
38. Fisch RZ. Trihexyphenidyl abuse. Therapeutic implications for negative symptoms of schizophrenia? Acta Psychiatr Scand 1987; 75:91-4. <https://doi.org/10.1111/j.1600-0447.1987.tb02757.x>
39. Fisher A, Barak D. Progress and perspectives in new muscarinic agonists. Drug. News Prosp. 1994; 7:453-64.
40. Fusek J. Bojové otravné látky se zneschopňujícím účinkem typu BZ. Voj Zdrav Listy 1977; 46:65-8.
41. Fusek J. Zneschopňující otravné látky s psychotomimetickým účinkem. Učební texty Hradec Králové:VLVDÚ , sv. 206, 1984.
42. Giachetti A, Micheletti R, Montagna E. Cardioselective profile of AF-DX116, a muscarinic M2-receptor antagonist. Life Sci 1986; 38:1663-72. <https://doi.org/10.1016/0024-3205(86)90410-8>
43. Gil DW, Wolfe BB. Pirenzepine distinguishes between muscarinic receptor-mediated phosphoinositide breakdown and inhibition of adenylate cyclase. J Pharmacol Exp Ther 1985; 232:608-16.
44. Gurwitz D, Haring R, Pinkas-Kramarski R et al. NGFdependent neurotrophic-like effects of AF102B, a M1 muscarinic agonist, in PC12M1 cells. Neuro Report 1995; 6:485-8.
45. Hadreen JC, Struble RG, Whitehause PJ et al. Topography of the magno-cellular basal forebrain system in human brain. J Neuropathol Exp Neurol 1984; 43:1-21. <https://doi.org/10.1097/00005072-198401000-00001>
46. Hollister LE. Pharmacology and Toxicology of Psychotomimetics. Handbook of Experimental Pharmacology. Vol.55/III. Berlin, Heidelberg, New York:Springer-Verlag, 1981.
47. Holmstedt B. The ordeal bean of old calabar: the pageant of Physostigma venenosum in medicine. In: Swain T (Ed.): Plants in the Development of Modern Medicine, Cambridge:Harvard Univ.Press, 1972:303-60.
48. Hrdina V. Současný vojenský význam látek vyvolávajících dočasné psychické zneškodnění. Obrana vlasti 1973; 5:17-1.
49. Hung AY, Haass C, Nitsch RN et al. Activation of protein kinase C inhibits cellular production of the amyloidprotein. J Biol Chem 1993; 268:22959-62.
50. Inch TD, Brimblecombe RW. Antiacetylcholine drugs: Chemistry, Stereochemistry and Pharmacology. Int Rev Neurobiol 1974; 16:67-144. <https://doi.org/10.1016/S0074-7742(08)60195-6>
51. Iverson F, Main AR. Effect of charge on carbamylation and binding constants of eel acetylcholinesterase in reaction with neostigmine and related carbamates. Biochemistry 1969; 8:1889-95. <https://doi.org/10.1021/bi00833a018>
52. Jagadeesh G, Sulakhe PV. Gallamine binding to heart M2 cholinergic receptors does not antagonize cholinergic inhibition of adenylate cyclase in isolated plasma membrane. Eur J Pharmacol 1985; 109:311-3. <https://doi.org/10.1016/0014-2999(85)90439-X>
53. James JR, Nordberg A. Genetic and environmental aspects of the role of nicotinic receptors in neurodegenerative disorders: Emphasis on Alzheimers disease and Parkinsons disease. Behav Genet 1995; 25:149-59. <https://doi.org/10.1007/BF02196924>
54. Janowsky DS, Risch SC. Cholinomimetic and anticholinergic drugs used to investigate an acetylcholine hypothesis of affective disorders and stress. Drug Dev Res 1984; 4:125-42. <https://doi.org/10.1002/ddr.430040202>
55. Jellinek T. Mood elevating effect of trihexyphenidyl and biperiden in individuals taking antipsychotic medication. Dis Nerv Syst 1977; 38:353-5.
56. Jenden DJ, ed. Cholinergic Mechanisms and Psychopharmacology. New York:Plenum Press, 1977.
57. Kaiser C, Rzeszotarski WJ. Cholinergic agents. Neurotransmissions 1987; 3:1-5.
58. Katzman R. Alzheimers disease. N Engl J Med 1986; 314:964-73. <https://doi.org/10.1056/NEJM198604103141506>
59. Kohl RL, Homick JL. Motion sickness: A modulatory role for the central cholinergic nervous system. Neurosci Behav Rev 1983; 7:73-85. <https://doi.org/10.1016/0149-7634(83)90008-8>
60. Krujevič K. Chemical nature of synaptic transmission in vertebrates. Physiol Rev 1974; 54:418-540. <https://doi.org/10.1152/physrev.1974.54.2.418>
61. Krupka RM, Laidler KJ. Molecular mechanisms for hydrolytic enzyme action. IV. Structure of the active center and the reaction mechanism. J Am Chem Soc 1961; 83:1458-60. <https://doi.org/10.1021/ja01467a044>
62. Kuribara H. Effects of amiridin on ambulatory activity and discrete shuttle avoidance response in mice. Folia Pharmacol Jap 1986; 88:299-307. <https://doi.org/10.1254/fpj.88.299>
63. Land W, Pinsky D, Salzman C. Abuse and misuse of anticholinergic medications. Hosp Community Psychiatry 1991; 42:580-1.
64. Lindborg B, Kerstin C, Dahlbom R. Troxonium-like inhibitors of the high affinity uptake of choline in mouse brain synaptosomes in vitro. Acta Pharm Suec 1984; 21:271-94.
65. Lindenboim L, Pinkas-Kamarksi R, Sokolovsky M et al. Activation of muscarinic receptors inhibits apoptosis in PC12M1 cells. J Neurochem 1995; 64:2491-9. <https://doi.org/10.1046/j.1471-4159.1995.64062491.x>
66. Liu JS, Yu CM, Zhou YZ. The structure of huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Can J Chem 1986; 64:837. <https://doi.org/10.1139/v86-137>
67. Macvicar K. Abuse of antiparkinsonian drugs by psychiatric patients. Am J Psychiatry 1977; 134:809-11.
68. Maelicke A, ed. Nicotinic Acetylcholine Receptor. Structure and Function. NATO Series H. New york: Springer-Verlag, 1986.
69. Marken PA, Stoner SC, Bunker MT. Anticholinergic drug abuse and misuse. Epidemiology and therapeutic implications. CNS Drugs 1006; 5:190-9. <https://doi.org/10.2165/00023210-199605030-00005>
70. Martinez-Murillo R, Rodrigo J. The localization of cholinergic neurons and markers in the CNS. In: Stone TW, ed. CNS Neurotransmitters and Neuromodulators: Acetylcholine. New York:CRC Press, 1995:1-37.
71. Marquis JK Fishman EB. Presynaptic acetylcholinesterase. Trends Pharmacol Sci 1985; 6:387-8. <https://doi.org/10.1016/0165-6147(85)90181-6>
72. Massoulié J, Sussman J, Bon S et al. Structure and functions of acetylcholinesterase and butyrylcholinesterase. Prog Brain Res 1993; 98:139-46. <https://doi.org/10.1016/S0079-6123(08)62391-2>
73. Matoušek J, Bajgar J, eds. Extrémně toxické nízkomolekulární syntetické jedy. Hradec Králové:VLVDÚ, 1979.
74. Matsumura F, ed. Differential Toxicities of Insecticides and Halogenated Aromatics. International Encyclopedia of Pharmacology and Therapeutics. Section 113. Oxford: Pergamon Press, 1984.
75. Mesulam MM, Mufson EJ, Lewey AI et al. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hyppothalamus in the rhesus monkey. J Comp Neurol 1983; 214:170-97. <https://doi.org/10.1002/cne.902140206>
76. Mesulam MM, Volicer L, Marquis JK et al. Systematic regional differences in the cholinergic innervation of the primate cerebral cortex: distribution of enzyme activities and some behavioral implications. Ann Neurol 1986; 19:144-51. <https://doi.org/10.1002/ana.410190206>
77. Miller PS, Rickardson JS, Jyn CA et al. Association of low serum anticholinergic levels and cognitive impairment in elderly presurgical patients. Am J Psychiatry 1988; 145:342-5.
78. Monod J., Changeux J-P, Jacob F. Allosteric proteins and cellular control systems. J Mol Biol 1963; 6:306-29. <https://doi.org/10.1016/S0022-2836(63)80091-1>
79. Monod J, Wyman J, Changeux J.-P. On the nature of allosteric transitions: a plausible model. J Mol Biol 1965; 12:88-118. <https://doi.org/10.1016/S0022-2836(65)80285-6>
80. Moos WH, Hershenson FM. Potential therapeutic strategies for senile cognitive disorders. Drugs N Prospect 1989; 2:397-8.
81. Motles E, Infante C, Gonzalez M. Rotational behavior in the cat induced by electrical stimulation of the pulvinar lateralis posterior nucleus complex: Role of the cholinergic system. Exp Neurol 1983; 82:43-54. <https://doi.org/10.1016/0014-4886(83)90241-8>
82. Nitsch RN, Slack BE, Wurtman RJ et al. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 1992; 258:304-7. <https://doi.org/10.1126/science.1411529>
83. Nordberg A. Neuronal nicotinic receptors and their implications in aging and neurodegenerative disorders in mammals. J Reprod Fert Suppl 1993; 46:145-54.
84. Nordberg A, Adam A, Nilsson L et al. Heterogeneous cholinergic nicotinic receptors in the CNS. In: Clementi F, Batti C, Sher E, eds. Nicotinic Acetylcholine Receptors in the Nervous System.. NATO Series H., New York:Springer-Verlag, 1988:331-50.
85. Nordberg A, Alafuzoff I, Winblad B. Nicotinic and muscarinic subtypes in the human brain: Changes with aging and dementia. J Neurosci Res 1992; 31:103-11. <https://doi.org/10.1002/jnr.490310115>
86. Nordberg A, Fuxe K, Holmstedt B et al. Nicotinic receptors in the CNS - their role in synaptic transmission. Prog Brain Res 1989; 79:1-366.
87. Nordberg A, Nilson-Hakensson L, Adam A et al. The role of nicotinic receptors in the pathophysiology of Alzheimers disease. Prog Brain Res 1989; 79:353-62. <https://doi.org/10.1016/S0079-6123(08)62495-4>
88. Nordberg A, Winblad B. Reduced number of 3H-nicotine and 3H-acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett 1996; 72:115-9. <https://doi.org/10.1016/0304-3940(86)90629-4>
89. OBrien RD. Toxic Phosphorus Esters. Chemistry, Metabolism, and Biological Effects. New York and London:Acad.Press, 1960.
90. Okazaki Y, Natori K, Irie T et al. Effect of novel CNSselective cholinesterase inhibitor, SM-10888, on habituation and passive avoidance response in mice. Jpn J Pharmacol 1990; 53:211-20. <https://doi.org/10.1254/jjp.53.211>
91. Ottoson D. Physiology of the Nervous System. New York:Oxford Univ Press, 1983.
92. Panksepp J, Sahley TL, Normansell LN. Cholinergic control of social play. Soc Neurosci Abstr 1984; 10:1177.
93. Patočka J, Bajgar J, Bielavský J et al. Kinetics of inhibition of cholinesterases by 1,2,3,4-tetrahydro-9-aminoacridine in vitro. Collect Czech Chem Commun 1976; 41:816-24. <https://doi.org/10.1135/cccc19760816>
94. Patočka J, Bajgar J, Bielavský J. Kinetics of inhibition of acetylcholinesterase by 9-hydrazino-1,2,3,4-tetrahydroacridine and 9-amino-10-methyl-1,2,3,4-tetrahydroacridinium in vitro. Collect Czech Chem Commun 1980; 45:966-76. <https://doi.org/10.1135/cccc19800966>
95. Patočka J, Bielavský J, Fusek J. Advances in synthesis of tacrine derivatives as potential drugs for treatment of Alzheimers disease. Homeostasis 1994; 35:299-301.
96. Pauling P, Datta N. Anticholinergic substances: A single constituent conformation. Proc Natl Acad Sci USA 1980; 77:708-12. <https://doi.org/10.1073/pnas.77.2.708> <PubMed>
97. Pepeu G, Ladinsky H, eds. Cholinergic Mechanisms: Phylogenetic Aspects, Central and Peripheral Synapses, and Clinical Significance. New York:Plenum Press, 1981.
98. Perry EK. The cholinergic system in old age and Alzheimers disease. Age Aging 1980; 9:1-8. <https://doi.org/10.1093/ageing/9.1.1>
99. Randall LO, Benson WM, Stefko PL. Spasmolytic action of bicyclic basic alcohol esters. J Pharmacol Exp Ther 1952; 104:284-90.
100. Rehavi M, Yaavetz B, Kloog Y et al. In vivo and in vitro studies on the antimuscarinic activity of some aminoesters of benzilic acid. Biochem Pharmacol 1979; 27:1117-24. <https://doi.org/10.1016/0006-2952(78)90438-0>
101. Robinson JP. The Problem of Chemical and Biological Warfare. Vol.II. CB Weapons Today. Stockholm:SIPRI, Almqvist and Wikselle, 1973.
102. Rolinski Z, Herbut M. Role of the cholinergic system in foot shock induced mouse aggression. Pol J Pharmacol 1981; 33:177-84.
103. Rosič N, Kušič R, Vojvodič V et al. Psychochemical war gases of BZ type. Vojnosanit Pregl 1974; 6:393-6.
104. Ruyan J. Huperzine A. Drugs Fut 1987; 12:531-2.
105. Rylett RJ, Ball M., Colhoun RH. Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimers disease. Brain Res 1983; 289:169-75. <https://doi.org/10.1016/0006-8993(83)90017-3>
106. Schliebs R, Robner S. Distribution of muscarinic acetylcholine receptors in the CNS. In: Stone TW, ed. CNS Neurotransmitters and Neuromodulators: Acetylcholine. Boca Raton, 1995:67-83.
107. Scheibel AB, Wechsler AF, Brazier MHB, eds. The Biological Substrates of Alzheimers Disease. Orlando: Acad. Press, 1986.
108. Schulz DW, Kuchel GA, Zigmond RE. Decline in response to nicotine in aged rat striatum: Correlation with a decrease in a subpopulation of nicotinic receptors. J Neurochem 1993; 61:2225-32. <https://doi.org/10.1111/j.1471-4159.1993.tb07463.x>
109. Schwartz AS, Kohlstaedt EV. Physostigmine effects in Alzheimers disease: Relationship to dementia severity. Life Sci 1986; 38:1021-9. <https://doi.org/10.1016/0024-3205(86)90236-5>
110. Simon JR, Atweh S, Kuhar MJ. Sodium-dependent high affinity choline uptake: A regulatory step in the synthesis of acetylcholine. J Neurochem 1976; 26:909-22. <https://doi.org/10.1111/j.1471-4159.1976.tb06472.x>
111. Sitaram N, Gillin MC. Choline chloride and arecoline: Effects on memory and sleep in man. In: Barbeau A, Growdon JW, Wurtman RJ, eds. Nutrition and the Brain, Vol. 5: Choline and Lecithin in Brain Disorders. New York: Raven Press, 1979:367-75.
112. Soreq, Guatt A, Loewenstein Y et al. Excavations into the active-site gorge of cholinesterases. Trends Biochem Sci 1992; 17:353-8. <https://doi.org/10.1016/0968-0004(92)90314-Y>
113. Steinberg GM, Mednick ML, Maddox J et al. A hydrophobic binding site in acetylcholinesterase. J Med Chem 1975; 18:1056-61. <https://doi.org/10.1021/jm00245a002>
114. Sternbach LH, Kaiser S. Antispasmotics. II. Esters of basic bicyclic alcohols. J Am Chem Soc 1952; 74:2219-21. <https://doi.org/10.1021/ja01129a020>
115. Summers WK, Majovski LV, Marsh GM et al. Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. N Engl J Med 1986; 315:1241-5. <https://doi.org/10.1056/NEJM198611133152001>
116. Szász G. Pharmaceutical Chemistry of Adrenergic and Cholinergic Drugs. CRC Press:Boca Raton, 1985:103.
117. Thal LJ, Fuld PA. Memory enhancement with oral physostigmine in Alzheimers disease. N Engl J Med 1983; 308:720.
118. Thomasen T, Bickel U, Fischer JP et al. Galanthamine hydrobromide in a long-term treatment of Alzheimers disease. Dementia 1990; 1:46-51.
119. Triggle DJ, Belleau B. Studies on the chemical basis for cholinomimetic and cholinolytic activity. Part I. The synthesis and configuration of quaternary salts in the 1,3-dioxolane and oxazoline series. Canad J Chem 1962; 40:1201-15. <https://doi.org/10.1139/v62-183>
120. Tuček S. Regulation of acetylcholine synthesis in the brain. J Neurochem 1985; 44:11-24. <https://doi.org/10.1111/j.1471-4159.1985.tb07106.x>
121. Tune L, Carr S, Hoag E et al. Anticholinergic effects of drugs commonly prescribed for the elderly: Potential means for assessing risk of delirium. Am J Psychiatry 1992; 149:1393-4.
122. Ueki A, Miyoshi K. Effects of cholinergic drugs on learning impairment in ventral globus pallidus-lesioned rats. J Neurol Sci 1989; 90:1-21. <https://doi.org/10.1016/0022-510X(89)90041-5>
123. Ulrichová J, Kovář J, Šimánek V. Interaction of quaternary aromatic isoquinoline alkaloids with acetylcholinesterase. Collect Czech Chem Commun 1985; 50:978-83. <https://doi.org/10.1135/cccc19850978>
124. Van-Abeelen JHF, Boersma HJLM. A genetically controlled hippocampal transmitter system regulating exploratory behavior in mice. J Neurogenet 1984; 1:153-8. <https://doi.org/10.3109/01677068409107080>
125. Vander AJ, Sherman JH, Luciano DS. Human Physiology. Fifth Edition. New York:McGraw-Hill Publ.Comp., 1990.
126. Vidal C. Changeux J-P. Neuronal nicotinic acetylcholine receptors in the brain. News Physiol Sci 1996; 11:202-8.
127. Vinař O. Anticholinergika. Riziko pro rozum. Remedia 1993; 3:376.
128. Waser PG. Cholinergic Mechanisms. New York:Reven Press, 1975.
129. Watts P, Wilkinson RG. The interaction of carbamates with acetylcholinesterase. Biochem Pharmacol 1977; 26:757-61. <https://doi.org/10.1016/0006-2952(77)90220-9>
130. Weiden MHJ. Toxicity of carbamates to insects. Bull WHO 1971; 44:203-13.
131. Weinstein H, Maayani S, Srebrenik S et al. A theoretical and experimental study of the semirigid cholinergic agonist 3-acetoxyquinuclidine. Mol Pharmacol. 1975; 11:671-89.
132. Wenke M, Mráz M, Hynie S. Farmakologie pro lékaře. Vol.I., Praha:Avicenum, Zdravotnické nakladatelství, 1983: 456.
133. Whitehouse PJ, Martino AM, Antuano PG et al. Nicotinic acetylcholine binding sites in Alzheimers brain. Brain Res 1986; 371:146-51. <https://doi.org/10.1016/0006-8993(86)90819-X>
134. Whitehouse PJ, Price DL, Clark AW et al. Alzheimers disease: Evidence for a selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 1981; 10:122-6. <https://doi.org/10.1002/ana.410100203>
135. Wilson IB. Conformational changes in acetylcholinesterase. Ann NY Acad Sci 1967; 144:664-74. <https://doi.org/10.1111/j.1749-6632.1967.tb53802.x>
136. Wilson IB, Hatch MA, Ginsburg S. Carbamyl derivatives of acetylcholinesterase. J Biol Chem 1961; 236:1498-1500.
137. Wonnacott S, Russell MAH, Stolerman IB. Nicotine Psychopharmacology - Molecular, Cellular and Behavioural Aspects. Oxford:Oxford Univ. Press., 1990.
138. Woody GE, OBrien CP. Anticholinergic toxic psychosis in drug abusers treated with benztropine. Compr Psychiatry 1974; 15:439-42. <https://doi.org/10.1016/0010-440X(74)90043-1>
139. Yamanishi Y, Araki S, Kosasa T et al. Neurochemical studies of E-2020 a novel centrally acting acetylcholinesterase inhibitor. Soc Neurosci Abstr 1988; 14:59.
140. Zhang SL. Therapeutic effects of huperzine A on the aged with memory impairment. New Drugs Clin Remedies 1986; 5:260-2.
141. Zhang X, Wahelstrm G, Nordberg A. Inf luence of development and aging in nicotinic receptor subtypes in rodent brain. Int J Develop Neurosci 1990; 8:715-721. <https://doi.org/10.1016/0736-5748(90)90065-A>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive