Acta Med. 2015, 58: 79-85

https://doi.org/10.14712/18059694.2015.97

Cell Stratification, Spheroid Formation and Bioscaffolds Used to Grow Cells in Three Dimensional Cultures

Hana Hrebíková, Dana Čížková, Jana Chvátalová, Rishikaysh Pisal, Richard Adamčik, Pavel Beznoska, Daniel Díaz-Garcia, Jaroslav Mokrý

Department of Histology and Embryology, Charles University Medical Faculty, Hradec Králové, Czech Republic

Received June 16, 2015
Accepted September 9, 2015

References

1. Beltrami AP et al. Adult cardiac stem cells are multipotent and support myocardium regeneration. Cell 2003; 114: 763–76. <https://doi.org/10.1016/S0092-8674(03)00687-1>
2. Cioce M et al. Mammosphere-forming cells from breast cancer cell lines as a tool for the identification of CSC-like- and early progenitor-targeting drugs, Cell Cycle 2010; 9: 2950–9. <https://doi.org/10.4161/cc.9.14.12371>
3. Cizkova D, Mokry J, Micuda S, Osterreicher J, Martinkova J. Expression of MRP2 and MDR1 transporters and other hepatic markers in rat and human liver and in WRL 68 cell line. Physiol Res 2005; 54: 419–28.
4. Freed LE, Vunjak-Novakovic G. Tissue culture bioreactors: Chondrogenesis as a model system. In: Lanza RP, Langer R, Chick WL eds. Principles of tissue engineering. Austin, USA: Academic Press, 1997: 151–65.
5. Freshney RI. Culture of specific cell types. In: Culture of animal cells: A manual of basic technique (2nd ed.). New York: Alan R. Liss Inc., 1988: 257–80.
6. Freshney RI. Three-dimensional culture systems. In: Culture of animal cells: A manual of basic technique (2nd ed.). New York: Alan R. Liss Inc., 1988: 297–307.
7. Fuoco C et al. In vivo generation of a mature and functional artificial skeletal muscle. EMBO Mol Med 2015; 7: 411–22. <https://doi.org/10.15252/emmm.201404062> <PubMed>
8. Hoehme S et al. Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc Natl Acad Sci USA 2010; 107: 10371–6. <https://doi.org/10.1073/pnas.0909374107> <PubMed>
9. Hrebikova H, Diaz D, Mokry J. Chemical decellularization: A promising approach for preparation of extracellular matrix. Biomed Pap 2015; 159: 12–7. <https://doi.org/10.5507/bp.2013.076>
10. Laerum OD, Bjerkvig R. Monolayer and three-dimensional culture of rat and human central nervous system: Normal and malignant cells and their interactions. Meth Neurosci 1990; 2: 210–36. <https://doi.org/10.1016/B978-0-12-185254-2.50019-X>
11. Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 2014; 9: 2329–40. <https://doi.org/10.1038/nprot.2014.158> <PubMed>
12. Liour SS, Yu RK. Differentiation of radial glia-like cells from embryonic stem cells. Glia 2003; 42: 109–17. <https://doi.org/10.1002/glia.10202>
13. Mazzoleni G, Di Lorenzo D, Steimberg N. Modelling tissues in 3D: The next future of pharmaco-toxicology and food research? Genes Nutrition 2009; 4: 13–22. <https://doi.org/10.1007/s12263-008-0107-0> <PubMed>
14. Mokry J, Karbanova J, Filip S. Differentiation potential of murine neural stem cells in vitro and after transplantation. Transplant Proc 2005; 37: 268–72. <https://doi.org/10.1016/j.transproceed.2004.12.233>
15. Mokry J, Subrtova D, Nemecek S. Differentiation of epidermal growth factor-responsive neural precursor cells within neurospheres. Acta Med 1996; 39: 7–20.
16. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nature Biotechnol 2014; 32: 773–85. <https://doi.org/10.1038/nbt.2958>
17. Murtagh J, McArdle E, Gilligan E, Thornton L, Furlong F, Martin F. Organization of mammary epithelial cells into 3D acinar structures requires glucocorticoid and JNK signaling. J Cell Biol 2004; 166: 133–43. <https://doi.org/10.1083/jcb.200403020> <PubMed>
18. Olausson M et al. Transplantation of an allogeneic vein bioengineered with autologous stem cells: A proof-of-concept study. Methods Mol Biol 2012; 798: 21–52.
19. Ott HC et al. Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat Med 2008; 14: 213–21. <https://doi.org/10.1038/nm1684>
20. Petersen TH et al. Tissue-engineered lungs for in vivo implantation. Science 2010; 329: 538–41. <https://doi.org/10.1126/science.1189345> <PubMed>
21. Ponce ML. Tube formation: an in vitro matrigel angiogenesis assay. Methods Mol Biol 2009; 467: 183–8. <https://doi.org/10.1007/978-1-59745-241-0_10>
22. Qing Q, Qin T. Optimal method for rat skeletal muscle decellularization. Chin J Rep Rec Surg 2009; 23: 836–9.
23. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255: 1707–10. <https://doi.org/10.1126/science.1553558>
24. Reynolds B, Rietze RL. Neural stem cells and neurospheres – re-evaluating the relationship. Nature Methods 2005; 2: 333–6. <https://doi.org/10.1038/nmeth758>
25. Uygun BE et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 2010; 16: 814–20. <https://doi.org/10.1038/nm.2170> <PubMed>
26. von der Mark K, Gauss V, von der Mark H, Müller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 1977; 267: 531–2. <https://doi.org/10.1038/267531a0>
27. Watson CL et al. An in vivo model of human small intestine using pluripotent stem cells. Nature Medicine 2014; 20: 1310–4. <https://doi.org/10.1038/nm.3737> <PubMed>
28. Xia Y et al. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol 2013; 15: 1507–15. <https://doi.org/10.1038/ncb2872>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive