Acta Med. 2004, 47: 215-228
https://doi.org/10.14712/18059694.2018.95
Acetylcholinesterase and Butyrylcholinesterase – Important Enzymes of Human Body
References
1. Aldridge WN, Reiner E. Enzyme Inhibitors as Substrates. Interaction of Esterases with Esters of Organophosphorus and Carbamic Acids. North Hollan Publ Comp, Amsterdam, 1972.
2. Biochem J 1953; 53:110–24.
< WN. Serum esterases. 1. Two type sof esterase (A and B) hydrolysing p-nitrophenylacetate, propionate and butyrate, and a method for thein determination. https://doi.org/10.1042/bj0530110>
<PubMed>
3. Genomics 1991; 11:452–4.
< PW, Gardner HAR, Galutira D, Lockridge O, LaDu BN, McAlpine PJ. The cloned butyrylcholinesterase (BCHE) gene maps to a single chromosome site, 3q26. https://doi.org/10.1016/0888-7543(91)90154-7>
4. Biochem Genet 1970; 4:321–38.
< K. Goedde HW. Heterogeneity in the silent gene phenotype of pseudocholinesterase of human serum. https://doi.org/10.1007/BF00485781>
5. Drug Chem Toxicol 1992; 15:285–94.
< DR, Harris LW, Woodard CL, Lennox WJ. The effect of pyridostigmine pretreatment on oxime efficacy against intoxication by soman or VX in rats. https://doi.org/10.3109/01480549209014158>
6. Brain Res Brain Res Rev 1997; 25:133–91.
< HR.Topology of ligand binding sites on the nicotinic acetylcholine receptor. https://doi.org/10.1016/S0165-0173(97)00020-9>
7. Biochemistry 1990; 29:124–31.
< M, Kott M, Vatsis KP, Bartels CF, La Du BN, Lockridge O. Structure of the gene for human butyrylcholinesterase. Evidence for a single copy. https://doi.org/10.1021/bi00453a015>
8. Biochem Pharmacol 1991; 41:37–41.
< Y, Shapira S, Levy D, Wolfe AD, Doctor BP, Raveh L. Butyrylcholinesterase and acetylcholinesterase prophylaxis against soman poisoning in mice. https://doi.org/10.1016/0006-2952(91)90008-S>
9. Neurochem Res 2001; 26:453–6.
< AS. Amyloid beta peptide processing, insulin degrading enzyme and butyrylcholinesterase. https://doi.org/10.1023/A:1010967602362>
10. J Biol Chemistry 1994; 269:6296–305.
D, Kronman C, Ordentlich A et al. Acetylcholinesterase peripheral anionic site degeneracy conferred by amino seid arrays sharing a common core.
11. Barnard EA. Enzymatic destruction of acetylcholine. In Hubbard JI (ed.): The Peripheral Nervous System, New York, USA: Plenum Press, 1974;201–24.
12. Mol Genet Metab 2001; 74: 484–8.
< C, Sasvari-Szekely M, Devai A, Kovacs E, Staub M, Enyedi P. Analysis of mutations in the plasma cholinesterase gene of patients with a history of prolonged neuromuscular block during anesthesia. https://doi.org/10.1006/mgme.2001.3251>
13. Science 1982; 217:408–14.
< RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. https://doi.org/10.1126/science.7046051>
14. Acta Neurol Scand Suppl 1988; 116:19–32.
< R, Giacobini E, Elble R, McIlhany M, Sherman K. Potential pharmacotherapy of Alzheimer’s disease. A comparison of various forms of physostigmine administration. https://doi.org/10.1111/j.1600-0404.1988.tb07983.x>
15. Biochemistry 1990; 29:10640–9.
< HA, Leonard K. Ligand exclusion on acetylcholinesterase. https://doi.org/10.1021/bi00499a010>
16. Ann Clin Biochem 2002; 39:154–6.
< AT, Fry DL, Sastre A, Lockridge O. Naturally occurring mutation, Asp70his, in human butyrylcholinesterase. https://doi.org/10.1258/0004563021901775>
17. EMBO J 2003; 22: 1–12.
< Y, Taylor P, Radic Z, Marchot P. Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. https://doi.org/10.1093/emboj/cdg005>
<PubMed>
18. J Neurochem 1983; 41:266–72.
< DM, Allen SJ, Benton JS et al. Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. https://doi.org/10.1111/j.1471-4159.1983.tb11838.x>
19. Adv Cytopharmacol 1979; 3:225–30.
DA. Neurotoxins and the ganglionic (C6) type of nicotinic receptor.
20. Drug Metab Dispos 2000; 28:367–71.
GN, Jufer RA, Goldberg SR et al. Butyrylcholinesterase accelerates cocaine metabolism: in vitro and in vivo effects in nonhuman primates and humans.
21. Mol Pharmacol 1966; 2:369–92.
JP. Responses of acetylcholinesterase from Torpedo marmorata to salts and curarizing drugs.
22. Cell Mol Neurobiol 2000; 20:569–77.
< Z, White MM. Forskolin modulates acetylcholine receptor gating by interacting with the small extracellular loop between the M2 and M3 transmembrane domains. https://doi.org/10.1023/A:1007011911611>
23. Br J Pharmac 1955; 10:462–5.
AF, Davies DR, Green AL, Rutland JP. The reactivation by oximes and hydroxamic acids of cholinesterase inhibited by organo-phosphorus compounds.
24. Coelho F, Birks J. Physostigmine for Alzheimer’s disease. Cochrane Database Syst Rev 2001; 2:CD001499.
25. Int J Clin Pract 2003; 57:219–23.
J. Galantamine: a review of its use in Alzheimer’s disease and vascular dementia.
26. Biochem J 1956; 98:869–73.
< DB, Marsh DJ, Read G. Dealkylation studies on inhibited acetylcholinesterase. https://doi.org/10.1042/bj0980869>
<PubMed>
27. J Chem Neuroanat 2000; 20:281–98.
< JA, Martin-Ruiz C, Graham A, Perry E. Nicotinic receptors in human brain: topography and pathology. https://doi.org/10.1016/S0891-0618(00)00110-1>
28. Brit J Pharmacol 1973; 49:322–7.
< TJ, Grove-White IG. An analysis of the learning deficit following hyoscine administration to man. https://doi.org/10.1111/j.1476-5381.1973.tb08379.x>
<PubMed>
29. J Comp Neurol 1998; 393:374–90.
< S, Grantham DL, Hopkins DA. Distribution of butyrylcholinesterase in the human amygdala and hippocampal formation. https://doi.org/10.1002/(SICI)1096-9861(19980413)393:3<374::AID-CNE8>3.0.CO;2-Z>
30. Biochim Biophys Acta 1990; 1039:103–9.
< O, Wedding RT. Absence of substrate inhibition and freezing-inactivation of the mosquito acetylcholinesterase are caused by alterations of hydrophobic interactions. https://doi.org/10.1016/0167-4838(90)90232-5>
31. Lancet 1976; 2:1403.
< P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer’s disease. https://doi.org/10.1016/S0140-6736(76)91936-X>
32. Science. 1978; 201:272–4.
< KL, Mohs RC, Tinklenberg JR, Pfefferbaum A, Hollister LE, Kopell BS. Physostigmine: improvement of long-term memory processes in normal humans. https://doi.org/10.1126/science.351807>
33. Lancet 1995; 345:625–30.
< KL, Powchik P. Tacrine. https://doi.org/10.1016/S0140-6736(95)90526-X>
34. Biochem J 1955; 60:339–46.
< AN. Return of cholinesterase activity in the rat after inhibition by organophosphorus compounds. https://doi.org/10.1042/bj0600339>
<PubMed>
35. J Appl Toxicol 1994; 14:317–31.
< RM. Review of oximes available for treatment of nerve agent poisoning. https://doi.org/10.1002/jat.2550140502>
36. J Clin Psychiatry 2003; 64(Suppl 9):11–7.
RS. Current treatments for Alzheimer’s disease: cholinesterase inhibitors.
37. Clin Biochem 1970; 3:245–54.
D, Brodeur J. An automated method for simultaneous determination of serum pseudocholinesterase activity, dibucaine number and fluoride number.
38. Arch Neurol 1974; 30:113–21.
< DA, Leavitt J. Human memory and the cholinergic system. https://doi.org/10.1001/archneur.1974.00490320001001>
39. Prog Brain Res 1993; 98:413–20.
< SB, Fibiger HC. Role of forebrain cholinergic systems in learning and memory: relevance to the cognitive deficits of aging and Alzheimer’s dementia. https://doi.org/10.1016/S0079-6123(08)62425-5>
40. EMBO J. 1992; 11:3255–61.
< N, Krejci E, Grassi J, Coussen F, Massoulie J, Bon S. Molecular architecture of acetylcholinesterase collagen-tailed forms; construction of a glycolipid- tailed tetramer. https://doi.org/10.1002/j.1460-2075.1992.tb05403.x>
<PubMed>
41. Br J Pharmacol 1952; 7:685–94.
CJ, Thompson RHS. Cholinesterase levels in the nervous system in triortho- cresyl phosphate poisoning.
42. Pharmacol Rev 1996; 48:531–65.
RM, Hegde SS, Watson N. Muscarinic receptor subtypes and smooth muscle function.
43. Alzheimer Dis Assoc Disord 1999; 13(Suppl 1):S82–7.
< RE. The biochemistry of Alzheimer disease. https://doi.org/10.1097/00002093-199904001-00018>
44. Prog Brain Res 1965; 15:35–47.
< RL. Enzyme histochemistry of neuroglia. https://doi.org/10.1016/S0079-6123(08)60938-3>
45. Bull Exp Biol Med 2003; 136:170–3.
< AP, Derlugov LP, Ponomarev VV, Dukhanin AS. Pharmacokinetics and pharmacodynamics of a new local anesthetic agent. https://doi.org/10.1023/A:1026323124831>
46. Genomics 1991; 11:455–8.
< G, Park H, Priddle J, Craig I, Craig S. Refinement of the localization of human butyrylcholinesterase to chromosome 3q26.1–q26.2 using a PCR-derived probe. https://doi.org/10.1016/0888-7543(91)90155-8>
47. Alzheimer Dis Assoc Disord 1995; 9(Suppl. 2):23–8.
< C, Mesulam MM. Cholinesterases and the pathology of Alzheimer disease. https://doi.org/10.1097/00002093-199501002-00005>
48. Int J Geriatr Psychiatry 2003; 18(Suppl 1):S1–S5.
< E. Cholinergic function and Alzheimer’s disease. https://doi.org/10.1002/gps.935>
49. Arch Biochem 1959; 80:211–4.
< BE, Jr, Steinberg GM, Lamb JC. Formation of potent inhibitors of AChE by reaction of pyridinaldoximes with isopropyl methylphosphonofluoridate (GB). https://doi.org/10.1016/0003-9861(59)90359-5>
50. Proc Natl Acad Sci USA 1993; 90:9031–5.
< M, Schalk I, Ehret-Sabatier L et al. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. https://doi.org/10.1073/pnas.90.19.9031>
<PubMed>
51. BioPharm J 2001; 5:6–8.
SA. A quick guide to muscarinic acetylcholine receptors.
52. Br J Pharmac 1956; 11:295–303.
FW. Chemical reactivation of phosphorylated human and bovine true cholinesterase.
53. Neuron 1996; 16:881–91.
< NC, Alvarez A, Perez CA et al. Acetylcholinesteraseaccelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils:possible role of the peripheral site of the enzyme. https://doi.org/10.1016/S0896-6273(00)80108-7>
54. Dev Neurosci 1985; 7:120–32.
< NC, Ruiz G. Membrane-bound form of acetylcholinesterase activated during postnatal development of the rat somatosensory cortex. https://doi.org/10.1159/000112282>
55. Acta Med (Hradec Králové) 2003; 46:101–7.
J, Krejčová G, Samnaliev I. A comparison of the neuroprotective efficacy of pharmacological pretreatment and antidotal treatment in soman-poisoned rats.
56. J Toxicol 2002; 40:803–16.
J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents.
57. Arch Neurol 2000; 57:600–2.
< D, Prabhakar S. Organophosphorus intoxication. https://doi.org/10.1001/archneur.57.4.600>
58. Toxicology 2003; 185:129–39.
< G, Kassa J. Neuroprotective efficacy of pharmacological pretreatment and antidotal treatment in tabun-poisoned rats. https://doi.org/10.1016/S0300-483X(02)00599-1>
59. Biochemistry 1963; 2:76–82.
< RM. The mechanism of action of acetylcholinesterase: substrate inhibition and the binding of inhibitors. https://doi.org/10.1021/bi00901a015>
60. J Clin Lab Anal 1994; 8:247–50.
< KM, Payne RH. Serum pseudocholinesterase and very-low-density lipoprotein metabolism. https://doi.org/10.1002/jcla.1860080411>
61. Prog Histochem Cytochem 1995; 29:1–94.
PG, Willbold E. Novel functions of cholinesterases in development, physiology and disease.
62. Trends Pharmacol Sci 1997; 18:355–62.
< P, Scaramellini C, Law C, McKechnie K. A three-state receptor model of agonist action. https://doi.org/10.1016/S0165-6147(97)90664-7>
63. Hum Molec Genet 1997; 6:1933–6.
< DJ, Johnston C, Smith AD. Synergy between the genes for butyrylcholinesterase K variant and apolipoprotein E4 in late-onset confirmed Alzheimer’s disease. https://doi.org/10.1093/hmg/6.11.1933>
64. J Neurobiol 2002; 53:447–56.
< N, Corringer P-J, Changeux J-P. The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. https://doi.org/10.1002/neu.10153>
65. J Biol Chem 1987; 262:12945–52.
O, Adkins S, La Du BN. Location of disulfide bonds within the sequence of human serum cholinesterase.
66. J Biol Chem 1987; 262:549–57.
O, Bartels CF, Vaughan TA, Wong CK, Norton SE, Johnson LL. Complete amino acid sequence of human serum cholinesterase.
67. Cytogenet Genome Res 2002; 98:154–9.
< LR, Peng H. Chromosome location and characterization of the human nicotinic acetylcholine subunit alpha (alpha) 9 (CHRNA9) gene. https://doi.org/10.1159/000069804>
68. Biochem J 1974; 143:733–44.
< A, Soucie W, Buxton I, Arinc E. The Purification of Cholinesterase from Horse Serum. https://doi.org/10.1042/bj1430733>
<PubMed>
69. Biochim Biophys Acta 1998; 1387:41–52.
< P, Froment MT, Fortier PL, Visicchio JE, Bartels CF, Lockridge O. Butyrylcholinesterase-catalysed hydrolysis of aspirin, a negatively charged ester, and aspirin-related neutral esters. https://doi.org/10.1016/S0167-4838(98)00104-6>
70. Prog Brain Res 1993; 98:139–46.
< J, Sussman J, Bon S, Silman I. Structure and functions of acetylcholinesterase and butyrylcholinesterase. https://doi.org/10.1016/S0079-6123(08)62391-2>
71. Neurosignals 2002; 11:130–43.
< J. The origin of the molecular diversity and functional anchoring of cholinesterases. https://doi.org/10.1159/000065054>
72. Matsumura F.: Toxicology of Insecticides. Plenum Press, New York 1975.
73. Pharmacol Biochem Behav 1999; 62:523–30.
< SM, Oubre JL, Caranto GR, Gentry MK, Galbicka G. Behavioral and immunological effects of exogenous butyrylcholinesterase in rhesus monkeys. https://doi.org/10.1016/S0091-3057(98)00183-X>
74. J Med Genet 2000; 37:182–5.
< SP, Crawford VLS, Dynan KB, McGleenon BM, Vahidassr MD, Lawson JT, Passmore AP. Butyrylcholinesterase K variant is genetically associated with late onset Alzheimer’s disease in Northern Ireland. https://doi.org/10.1136/jmg.37.3.182>
<PubMed>
75. Ann Neurol 1987; 22:683–91.
< MM, Geula C, Moran MA. Anatomy of cholinesterase inhibition in Alzheimer’s disease: effect of physostigmine and tetrahydroaminoacridine on plaques and tangles. https://doi.org/10.1002/ana.410220603>
76. Acta Neuropathol (Berl). 1993; 85:362–9.
< MA, Mufson EJ, Gomez-Ramos P. Colocalization of cholinesterases with beta amyloid protein in aged and Alzheimer’s brains. https://doi.org/10.1007/BF00334445>
77. J Med Genet 1982; 19:22–5.
< AA. Apnoea following suxamethonium: the genetic study of four generations of a family. https://doi.org/10.1136/jmg.19.1.22>
<PubMed>
78. Semin Neurol 2003; 23:191–8.
J. Therapy in myasthenia gravis and Lambert-Eaton myasthenic syndrome.
79. J Biol Chem 1993; 268:17083–95.
A, Barak D, Kronman C, et al. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket.
80. Med Health R I 2002; 85:210–2.
BR. Medical treatment of Alzheimer’s disease: past, present, and future.
81. Acta Psychiatr Scand Suppl 1991; 366:27–33.
< JM, Boddeke HW, Pombo-Villar E. Cholinergic neuropharmacology: an update. https://doi.org/10.1111/j.1600-0447.1991.tb03106.x>
82. Prog Neurobiol 2000; 61:75–111.
< D, Nordberg A.Neuronal nicotinic receptors in the human brain. https://doi.org/10.1016/S0301-0082(99)00045-3>
83. Chem Listy 1998; 92:1016–9.
J. Acetylcholinesterase inhibitors – From nervous gas to Alzheimer’s disease therapeutics.
84. Čs Fyziol 2001; 50:4–10.
J, Strunecká A, Řípová D: Cholinesterázy a jejich význam v etiologii, diagnostice a terapii Alzheimerovy nemoci.
85. Voenno Med Delo 1990; 44:14–19.
J.: T-1123, highly toxic carbamate with military significance (In Bulgarian).
86. Pharmacol Rev 1952; 4:219–53.
WD, Zaimis E. The methonium.
87. Neuropathol Appl Neurobiol 1978; 4:273–7.
< EK, Perry RH, Blessed G, Tomlinson BE. Changes in brain cholinesterases in senile dementia of Alzheimer type. https://doi.org/10.1111/j.1365-2990.1978.tb00545.x>
88. Age Ageing 1980; 9:1–8.
< EK. The cholinergic system in old age and Alzheimer’s disease. https://doi.org/10.1093/ageing/9.1.1>
89. Mol Pharmacol 1991; 39:98–104.
Z, Reiner E, Taylor P. Role of the peripheral anionic site on acetylcholinesterase: inhibition by substrates and coumarin derivatives.
90. Biochem Biophys Res Commun 1997; 232:652–5.
< AE, Perez DR, Alvarez A et al. A monoclonal antibody against acetylcholinesterase inhibits the formation of amyloid fibrils induced by the enzyme. https://doi.org/10.1006/bbrc.1997.6357>
91. Ann Pharm Fr 2000; 58:5–12.
I, Meunier J. Chemical weapons: antidotes. View about the real means, perspectives. (in French)
92. Proc Natl Acad Sci USA 1975; 72:3834–8.
< TL. Catalysis by acetylcholinesterase: evidence that the rate-limiting step for acylation with certain substrates precedes general acid-base catalysis. https://doi.org/10.1073/pnas.72.10.3834>
<PubMed>
93. Eur J Neurosci. 1994; 6:1596–604.
< F, Court JA, Sala C, Morris C, Chini B, Perry E, Clementi F. Distribution of nicotinic receptors in the human hippocampus and thalamus. https://doi.org/10.1111/j.1460-9568.1994.tb00550.x>
94. Am J Hum Genet 1992; 50:1086–103.
HM, Lubrano T, La Du BN. DNA mutation associated with the human butyrylcholinesterase K-variant and its linkage to the atypical variant mutation and other polymorphic sites.
95. Brain Res 1983; 289:169–75.
< RJ, Ball MJ, Colhoun EH. Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer’s disease. https://doi.org/10.1016/0006-8993(83)90017-3>
96. Curr Urol Rep. 2003; 4:421–8.
< HM, Dmochowski RR. Muscarinic receptors: what we know. https://doi.org/10.1007/s11934-003-0021-3>
97. Neurobiol Aging 1992; 13:697–704.
< KM, Harrington LS, Neilsen S, Zweig RM, Peacock JH. Soluble and membrane-bound forms of brain acetylcholinesterase in Alzheimer’s disease. https://doi.org/10.1016/0197-4580(92)90092-C>
98. Environ Health Perspect 1994; 102: 580–5.
< F, Steenland K, Hernandez B, Wilson B, Krieger R, Spencer J, Margetich S. Monitoring peach harvest workers exposed to azinphosmethyl residues in Sutter County, California, 1991. https://doi.org/10.1289/ehp.94102580>
<PubMed>
99. Nature 1986; 319:407–9.
< M, Camp S, Maulet Y, Newton M, MacPhee-Quigley K, Taylor SS, Friedmann T, Taylor P.Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. https://doi.org/10.1038/319407a0>
100. Pharmacol Ther 1995; 67: 283–322.
< M, Glick D, Loewenstein Y, Soreq H. Engineering of human cholinesterases explains and predicts diverse consequences of administration of various drugs and poisons. https://doi.org/10.1016/0163-7258(95)00019-D>
101. Br J Pharmacol 1994; 113:898–902.
< WX, Jobling P, Horn JP. The sensitivity of nicotinic synapses in bullfrog sympathetic ganglia to alpha-bungarotoxin and neuronal-bungarotoxin. https://doi.org/10.1111/j.1476-5381.1994.tb17077.x>
<PubMed>
102. J Neurochem 1983; 40:503–9.
< NR, Bowen DM, Allen SJ, Smith CC, Neary D, Thomas DJ, Davison AN. Presynaptic cholinergic dysfunction in patients with dementia. https://doi.org/10.1111/j.1471-4159.1983.tb11311.x>
103. Lancet 1984; 1:513.
< AD, Cuello AC. Alzheimer’s disease and acetylcholinesterase-containing neurons. https://doi.org/10.1016/S0140-6736(84)92881-2>
104. TIBS 1992; 17:353–8.
H, Gnatt A, Loewenstein Y, Seville LF. Excavations into the active-site gorge of acetylcholinesterase.
105. J Chem Soc 1925; 127:247–58.
< E, Barger G. Physostigmine (eserine). Part III. https://doi.org/10.1039/CT9252700247>
106. Science 1991; 253:872–9.
< JL, Harel M, Frolow F et al. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. https://doi.org/10.1126/science.1678899>
107. Ann Neurol 1991; 30:572–80.
< RD, Masliah E, Salmon DP et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. https://doi.org/10.1002/ana.410300410>
108. Toxicology 1999; 134:169–78.
< K, Kaliste-Korhonen E, Raushel FM, Hanninen O.Success of pyridostigmine, physostigmine, eptastigmine and phosphotriesterase treatments in acute sarin intoxication. https://doi.org/10.1016/S0300-483X(99)00029-3>
109. Biochem J 1957; 67:202–8.
< M, Heath DF. The reactivation of cholinesterase after inhibition in vivo by some dimethyl phosphate esters. https://doi.org/10.1042/bj0670202>
<PubMed>
110. Prog Brain Res 2004; 145:59–66.
< LA, Levey AI. Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. https://doi.org/10.1016/S0079-6123(03)45003-6>
111. J Biol Chem 1951; 190:111–7.
IB. Acetylcholinesterases. XI. Reversibility of tetraethylpyrophosphate inhibition.
112. Arch Biochem Biophys 1955; 54:269–71.
IB, Ginsburg S. Reactivation of acetylcholinesterase inhibited by alkylphosphates.
113. J Neural Transm Suppl. 1997; 49:93–102.
M. Possible role of the cholinergic system and disease models.
114. Prog Neuropsychopharmacol Biol Psychiatry 1986; 10:665–76.
< PJ, Au KS. Cholinergic receptors in aging and Alzheimer’s disease. https://doi.org/10.1016/0278-5846(86)90035-7>
115. Ann Neurol 1993; 34:373–84.
< CI, Geula C, Mesulam MM. Neuroglial cholinesterases in the normal brain and in Alzheimer’s disease: relationship to plaques, tangles, and patterns of selective vulnerability. https://doi.org/10.1002/ana.410340312>