Acta Med. 2004, 47: 215-228

https://doi.org/10.14712/18059694.2018.95

Acetylcholinesterase and Butyrylcholinesterase – Important Enzymes of Human Body

Jiří Patočkaa,b, Kamil Kučaa, Daniel Juna

aPurkyně Military Medical Academy in Hradec Králové, Department of Toxicology, Hradec Králové, Czech Republic
bUniversity of South Bohemia, Faculty of Health and Social Studies, Department of Radiology and Toxicology, České Budějovice, Czech Republic

Received April 1, 2004
Accepted July 1, 2004

References

1. Aldridge WN, Reiner E. Enzyme Inhibitors as Substrates. Interaction of Esterases with Esters of Organophosphorus and Carbamic Acids. North Hollan Publ Comp, Amsterdam, 1972.
2. Aldridge WN. Serum esterases. 1. Two type sof esterase (A and B) hydrolysing p-nitrophenylacetate, propionate and butyrate, and a method for thein determination. Biochem J 1953; 53:110–24. <https://doi.org/10.1042/bj0530110> <PubMed>
3. Allderdice PW, Gardner HAR, Galutira D, Lockridge O, LaDu BN, McAlpine PJ. The cloned butyrylcholinesterase (BCHE) gene maps to a single chromosome site, 3q26. Genomics 1991; 11:452–4. <https://doi.org/10.1016/0888-7543(91)90154-7>
4. Altland K. Goedde HW. Heterogeneity in the silent gene phenotype of pseudocholinesterase of human serum. Biochem Genet 1970; 4:321–38. <https://doi.org/10.1007/BF00485781>
5. Anderson DR, Harris LW, Woodard CL, Lennox WJ. The effect of pyridostigmine pretreatment on oxime efficacy against intoxication by soman or VX in rats. Drug Chem Toxicol 1992; 15:285–94. <https://doi.org/10.3109/01480549209014158>
6. Arias HR.Topology of ligand binding sites on the nicotinic acetylcholine receptor. Brain Res Brain Res Rev 1997; 25:133–91. <https://doi.org/10.1016/S0165-0173(97)00020-9>
7. Arpagaus M, Kott M, Vatsis KP, Bartels CF, La Du BN, Lockridge O. Structure of the gene for human butyrylcholinesterase. Evidence for a single copy. Biochemistry 1990; 29:124–31. <https://doi.org/10.1021/bi00453a015>
8. Ashani Y, Shapira S, Levy D, Wolfe AD, Doctor BP, Raveh L. Butyrylcholinesterase and acetylcholinesterase prophylaxis against soman poisoning in mice. Biochem Pharmacol 1991; 41:37–41. <https://doi.org/10.1016/0006-2952(91)90008-S>
9. Balasubramanian AS. Amyloid beta peptide processing, insulin degrading enzyme and butyrylcholinesterase. Neurochem Res 2001; 26:453–6. <https://doi.org/10.1023/A:1010967602362>
10. Barak D, Kronman C, Ordentlich A et al. Acetylcholinesterase peripheral anionic site degeneracy conferred by amino seid arrays sharing a common core. J Biol Chemistry 1994; 269:6296–305.
11. Barnard EA. Enzymatic destruction of acetylcholine. In Hubbard JI (ed.): The Peripheral Nervous System, New York, USA: Plenum Press, 1974;201–24.
12. Barta C, Sasvari-Szekely M, Devai A, Kovacs E, Staub M, Enyedi P. Analysis of mutations in the plasma cholinesterase gene of patients with a history of prolonged neuromuscular block during anesthesia. Mol Genet Metab 2001; 74: 484–8. <https://doi.org/10.1006/mgme.2001.3251>
13. Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982; 217:408–14. <https://doi.org/10.1126/science.7046051>
14. Becker R, Giacobini E, Elble R, McIlhany M, Sherman K. Potential pharmacotherapy of Alzheimer’s disease. A comparison of various forms of physostigmine administration. Acta Neurol Scand Suppl 1988; 116:19–32. <https://doi.org/10.1111/j.1600-0404.1988.tb07983.x>
15. Berman HA, Leonard K. Ligand exclusion on acetylcholinesterase. Biochemistry 1990; 29:10640–9. <https://doi.org/10.1021/bi00499a010>
16. Boeck AT, Fry DL, Sastre A, Lockridge O. Naturally occurring mutation, Asp70his, in human butyrylcholinesterase. Ann Clin Biochem 2002; 39:154–6. <https://doi.org/10.1258/0004563021901775>
17. Bourne Y, Taylor P, Radic Z, Marchot P. Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. EMBO J 2003; 22: 1–12. <https://doi.org/10.1093/emboj/cdg005> <PubMed>
18. Bowen DM, Allen SJ, Benton JS et al. Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J Neurochem 1983; 41:266–72. <https://doi.org/10.1111/j.1471-4159.1983.tb11838.x>
19. Brown DA. Neurotoxins and the ganglionic (C6) type of nicotinic receptor. Adv Cytopharmacol 1979; 3:225–30.
20. Carmona GN, Jufer RA, Goldberg SR et al. Butyrylcholinesterase accelerates cocaine metabolism: in vitro and in vivo effects in nonhuman primates and humans. Drug Metab Dispos 2000; 28:367–71.
21. Changeux JP. Responses of acetylcholinesterase from Torpedo marmorata to salts and curarizing drugs. Mol Pharmacol 1966; 2:369–92.
22. Chen Z, White MM. Forskolin modulates acetylcholine receptor gating by interacting with the small extracellular loop between the M2 and M3 transmembrane domains. Cell Mol Neurobiol 2000; 20:569–77. <https://doi.org/10.1023/A:1007011911611>
23. Childs AF, Davies DR, Green AL, Rutland JP. The reactivation by oximes and hydroxamic acids of cholinesterase inhibited by organo-phosphorus compounds. Br J Pharmac 1955; 10:462–5.
24. Coelho F, Birks J. Physostigmine for Alzheimer’s disease. Cochrane Database Syst Rev 2001; 2:CD001499.
25. Corey-Bloom J. Galantamine: a review of its use in Alzheimer’s disease and vascular dementia. Int J Clin Pract 2003; 57:219–23.
26. Coult DB, Marsh DJ, Read G. Dealkylation studies on inhibited acetylcholinesterase. Biochem J 1956; 98:869–73. <https://doi.org/10.1042/bj0980869> <PubMed>
27. Court JA, Martin-Ruiz C, Graham A, Perry E. Nicotinic receptors in human brain: topography and pathology. J Chem Neuroanat 2000; 20:281–98. <https://doi.org/10.1016/S0891-0618(00)00110-1>
28. Crow TJ, Grove-White IG. An analysis of the learning deficit following hyoscine administration to man. Brit J Pharmacol 1973; 49:322–7. <https://doi.org/10.1111/j.1476-5381.1973.tb08379.x> <PubMed>
29. Darvesh S, Grantham DL, Hopkins DA. Distribution of butyrylcholinesterase in the human amygdala and hippocampal formation. J Comp Neurol 1998; 393:374–90. <https://doi.org/10.1002/(SICI)1096-9861(19980413)393:3<374::AID-CNE8>3.0.CO;2-Z>
30. Dary O, Wedding RT. Absence of substrate inhibition and freezing-inactivation of the mosquito acetylcholinesterase are caused by alterations of hydrophobic interactions. Biochim Biophys Acta 1990; 1039:103–9. <https://doi.org/10.1016/0167-4838(90)90232-5>
31. Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 1976; 2:1403. <https://doi.org/10.1016/S0140-6736(76)91936-X>
32. Davis KL, Mohs RC, Tinklenberg JR, Pfefferbaum A, Hollister LE, Kopell BS. Physostigmine: improvement of long-term memory processes in normal humans. Science. 1978; 201:272–4. <https://doi.org/10.1126/science.351807>
33. Davis KL, Powchik P. Tacrine. Lancet 1995; 345:625–30. <https://doi.org/10.1016/S0140-6736(95)90526-X>
34. Davison AN. Return of cholinesterase activity in the rat after inhibition by organophosphorus compounds. Biochem J 1955; 60:339–46. <https://doi.org/10.1042/bj0600339> <PubMed>
35. Dawson RM. Review of oximes available for treatment of nerve agent poisoning. J Appl Toxicol 1994; 14:317–31. <https://doi.org/10.1002/jat.2550140502>
36. Doody RS. Current treatments for Alzheimer’s disease: cholinesterase inhibitors. J Clin Psychiatry 2003; 64(Suppl 9):11–7.
37. Doutin D, Brodeur J. An automated method for simultaneous determination of serum pseudocholinesterase activity, dibucaine number and fluoride number. Clin Biochem 1970; 3:245–54.
38. Drachman DA, Leavitt J. Human memory and the cholinergic system. Arch Neurol 1974; 30:113–21. <https://doi.org/10.1001/archneur.1974.00490320001001>
39. Dunnett SB, Fibiger HC. Role of forebrain cholinergic systems in learning and memory: relevance to the cognitive deficits of aging and Alzheimer’s dementia. Prog Brain Res 1993; 98:413–20. <https://doi.org/10.1016/S0079-6123(08)62425-5>
40. Duval N, Krejci E, Grassi J, Coussen F, Massoulie J, Bon S. Molecular architecture of acetylcholinesterase collagen-tailed forms; construction of a glycolipid- tailed tetramer. EMBO J. 1992; 11:3255–61. <https://doi.org/10.1002/j.1460-2075.1992.tb05403.x> <PubMed>
41. Earl CJ, Thompson RHS. Cholinesterase levels in the nervous system in triortho- cresyl phosphate poisoning. Br J Pharmacol 1952; 7:685–94.
42. Eglen RM, Hegde SS, Watson N. Muscarinic receptor subtypes and smooth muscle function. Pharmacol Rev 1996; 48:531–65.
43. Fine RE. The biochemistry of Alzheimer disease. Alzheimer Dis Assoc Disord 1999; 13(Suppl 1):S82–7. <https://doi.org/10.1097/00002093-199904001-00018>
44. Friede RL. Enzyme histochemistry of neuroglia. Prog Brain Res 1965; 15:35–47. <https://doi.org/10.1016/S0079-6123(08)60938-3>
45. Galenko-Yaroshevskii AP, Derlugov LP, Ponomarev VV, Dukhanin AS. Pharmacokinetics and pharmacodynamics of a new local anesthetic agent. Bull Exp Biol Med 2003; 136:170–3. <https://doi.org/10.1023/A:1026323124831>
46. Gaughan G, Park H, Priddle J, Craig I, Craig S. Refinement of the localization of human butyrylcholinesterase to chromosome 3q26.1–q26.2 using a PCR-derived probe. Genomics 1991; 11:455–8. <https://doi.org/10.1016/0888-7543(91)90155-8>
47. Geula C, Mesulam MM. Cholinesterases and the pathology of Alzheimer disease. Alzheimer Dis Assoc Disord 1995; 9(Suppl. 2):23–8. <https://doi.org/10.1097/00002093-199501002-00005>
48. Giacobini E. Cholinergic function and Alzheimer’s disease. Int J Geriatr Psychiatry 2003; 18(Suppl 1):S1–S5. <https://doi.org/10.1002/gps.935>
49. Hackley BE, Jr, Steinberg GM, Lamb JC. Formation of potent inhibitors of AChE by reaction of pyridinaldoximes with isopropyl methylphosphonofluoridate (GB). Arch Biochem 1959; 80:211–4. <https://doi.org/10.1016/0003-9861(59)90359-5>
50. Harel M, Schalk I, Ehret-Sabatier L et al. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Natl Acad Sci USA 1993; 90:9031–5. <https://doi.org/10.1073/pnas.90.19.9031> <PubMed>
51. Hirota SA. A quick guide to muscarinic acetylcholine receptors. BioPharm J 2001; 5:6–8.
52. Hobbiger FW. Chemical reactivation of phosphorylated human and bovine true cholinesterase. Br J Pharmac 1956; 11:295–303.
53. Inestrosa NC, Alvarez A, Perez CA et al. Acetylcholinesteraseaccelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils:possible role of the peripheral site of the enzyme. Neuron 1996; 16:881–91. <https://doi.org/10.1016/S0896-6273(00)80108-7>
54. Inestrosa NC, Ruiz G. Membrane-bound form of acetylcholinesterase activated during postnatal development of the rat somatosensory cortex. Dev Neurosci 1985; 7:120–32. <https://doi.org/10.1159/000112282>
55. Kassa J, Krejčová G, Samnaliev I. A comparison of the neuroprotective efficacy of pharmacological pretreatment and antidotal treatment in soman-poisoned rats. Acta Med (Hradec Králové) 2003; 46:101–7.
56. Kassa J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. J Toxicol 2002; 40:803–16.
57. Khurana D, Prabhakar S. Organophosphorus intoxication. Arch Neurol 2000; 57:600–2. <https://doi.org/10.1001/archneur.57.4.600>
58. Krejčová G, Kassa J. Neuroprotective efficacy of pharmacological pretreatment and antidotal treatment in tabun-poisoned rats. Toxicology 2003; 185:129–39. <https://doi.org/10.1016/S0300-483X(02)00599-1>
59. Krupka RM. The mechanism of action of acetylcholinesterase: substrate inhibition and the binding of inhibitors. Biochemistry 1963; 2:76–82. <https://doi.org/10.1021/bi00901a015>
60. Kutty KM, Payne RH. Serum pseudocholinesterase and very-low-density lipoprotein metabolism. J Clin Lab Anal 1994; 8:247–50. <https://doi.org/10.1002/jcla.1860080411>
61. Layer PG, Willbold E. Novel functions of cholinesterases in development, physiology and disease. Prog Histochem Cytochem 1995; 29:1–94.
62. Leff P, Scaramellini C, Law C, McKechnie K. A three-state receptor model of agonist action. Trends Pharmacol Sci 1997; 18:355–62. <https://doi.org/10.1016/S0165-6147(97)90664-7>
63. Lehmann DJ, Johnston C, Smith AD. Synergy between the genes for butyrylcholinesterase K variant and apolipoprotein E4 in late-onset confirmed Alzheimer’s disease. Hum Molec Genet 1997; 6:1933–6. <https://doi.org/10.1093/hmg/6.11.1933>
64. Le Novere N, Corringer P-J, Changeux J-P. The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol 2002; 53:447–56. <https://doi.org/10.1002/neu.10153>
65. Lockridge O, Adkins S, La Du BN. Location of disulfide bonds within the sequence of human serum cholinesterase. J Biol Chem 1987; 262:12945–52.
66. Lockridge O, Bartels CF, Vaughan TA, Wong CK, Norton SE, Johnson LL. Complete amino acid sequence of human serum cholinesterase. J Biol Chem 1987; 262:549–57.
67. Lustig LR, Peng H. Chromosome location and characterization of the human nicotinic acetylcholine subunit alpha (alpha) 9 (CHRNA9) gene. Cytogenet Genome Res 2002; 98:154–9. <https://doi.org/10.1159/000069804>
68. Main A, Soucie W, Buxton I, Arinc E. The Purification of Cholinesterase from Horse Serum. Biochem J 1974; 143:733–44. <https://doi.org/10.1042/bj1430733> <PubMed>
69. Masson P, Froment MT, Fortier PL, Visicchio JE, Bartels CF, Lockridge O. Butyrylcholinesterase-catalysed hydrolysis of aspirin, a negatively charged ester, and aspirin-related neutral esters. Biochim Biophys Acta 1998; 1387:41–52. <https://doi.org/10.1016/S0167-4838(98)00104-6>
70. Massoulie J, Sussman J, Bon S, Silman I. Structure and functions of acetylcholinesterase and butyrylcholinesterase. Prog Brain Res 1993; 98:139–46. <https://doi.org/10.1016/S0079-6123(08)62391-2>
71. Massoulie J. The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 2002; 11:130–43. <https://doi.org/10.1159/000065054>
72. Matsumura F.: Toxicology of Insecticides. Plenum Press, New York 1975.
73. Matzke SM, Oubre JL, Caranto GR, Gentry MK, Galbicka G. Behavioral and immunological effects of exogenous butyrylcholinesterase in rhesus monkeys. Pharmacol Biochem Behav 1999; 62:523–30. <https://doi.org/10.1016/S0091-3057(98)00183-X>
74. McIlroy SP, Crawford VLS, Dynan KB, McGleenon BM, Vahidassr MD, Lawson JT, Passmore AP. Butyrylcholinesterase K variant is genetically associated with late onset Alzheimer’s disease in Northern Ireland. J Med Genet 2000; 37:182–5. <https://doi.org/10.1136/jmg.37.3.182> <PubMed>
75. Mesulam MM, Geula C, Moran MA. Anatomy of cholinesterase inhibition in Alzheimer’s disease: effect of physostigmine and tetrahydroaminoacridine on plaques and tangles. Ann Neurol 1987; 22:683–91. <https://doi.org/10.1002/ana.410220603>
76. Moran MA, Mufson EJ, Gomez-Ramos P. Colocalization of cholinesterases with beta amyloid protein in aged and Alzheimer’s brains. Acta Neuropathol (Berl). 1993; 85:362–9. <https://doi.org/10.1007/BF00334445>
77. Morgan AA. Apnoea following suxamethonium: the genetic study of four generations of a family. J Med Genet 1982; 19:22–5. <https://doi.org/10.1136/jmg.19.1.22> <PubMed>
78. Newsom-Davis J. Therapy in myasthenia gravis and Lambert-Eaton myasthenic syndrome. Semin Neurol 2003; 23:191–8.
79. Ordentlich A, Barak D, Kronman C, et al. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. J Biol Chem 1993; 268:17083–95.
80. Ott BR. Medical treatment of Alzheimer’s disease: past, present, and future. Med Health R I 2002; 85:210–2.
81. Palacios JM, Boddeke HW, Pombo-Villar E. Cholinergic neuropharmacology: an update. Acta Psychiatr Scand Suppl 1991; 366:27–33. <https://doi.org/10.1111/j.1600-0447.1991.tb03106.x>
82. Paterson D, Nordberg A.Neuronal nicotinic receptors in the human brain. Prog Neurobiol 2000; 61:75–111. <https://doi.org/10.1016/S0301-0082(99)00045-3>
83. Patočka J. Acetylcholinesterase inhibitors – From nervous gas to Alzheimer’s disease therapeutics. Chem Listy 1998; 92:1016–9.
84. Patočka J, Strunecká A, Řípová D: Cholinesterázy a jejich význam v etiologii, diagnostice a terapii Alzheimerovy nemoci. Čs Fyziol 2001; 50:4–10.
85. Patočka J.: T-1123, highly toxic carbamate with military significance (In Bulgarian). Voenno Med Delo 1990; 44:14–19.
86. Paton WD, Zaimis E. The methonium. Pharmacol Rev 1952; 4:219–53.
87. Perry EK, Perry RH, Blessed G, Tomlinson BE. Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol Appl Neurobiol 1978; 4:273–7. <https://doi.org/10.1111/j.1365-2990.1978.tb00545.x>
88. Perry EK. The cholinergic system in old age and Alzheimer’s disease. Age Ageing 1980; 9:1–8. <https://doi.org/10.1093/ageing/9.1.1>
89. Radic Z, Reiner E, Taylor P. Role of the peripheral anionic site on acetylcholinesterase: inhibition by substrates and coumarin derivatives. Mol Pharmacol 1991; 39:98–104.
90. Reyes AE, Perez DR, Alvarez A et al. A monoclonal antibody against acetylcholinesterase inhibits the formation of amyloid fibrils induced by the enzyme. Biochem Biophys Res Commun 1997; 232:652–5. <https://doi.org/10.1006/bbrc.1997.6357>
91. Ricordel I, Meunier J. Chemical weapons: antidotes. View about the real means, perspectives. (in French) Ann Pharm Fr 2000; 58:5–12.
92. Rosenberry TL. Catalysis by acetylcholinesterase: evidence that the rate-limiting step for acylation with certain substrates precedes general acid-base catalysis. Proc Natl Acad Sci USA 1975; 72:3834–8. <https://doi.org/10.1073/pnas.72.10.3834> <PubMed>
93. Rubboli F, Court JA, Sala C, Morris C, Chini B, Perry E, Clementi F. Distribution of nicotinic receptors in the human hippocampus and thalamus. Eur J Neurosci. 1994; 6:1596–604. <https://doi.org/10.1111/j.1460-9568.1994.tb00550.x>
94. Rubinstein HM, Lubrano T, La Du BN. DNA mutation associated with the human butyrylcholinesterase K-variant and its linkage to the atypical variant mutation and other polymorphic sites. Am J Hum Genet 1992; 50:1086–103.
95. Rylett RJ, Ball MJ, Colhoun EH. Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer’s disease. Brain Res 1983; 289:169–75. <https://doi.org/10.1016/0006-8993(83)90017-3>
96. Scarpero HM, Dmochowski RR. Muscarinic receptors: what we know. Curr Urol Rep. 2003; 4:421–8. <https://doi.org/10.1007/s11934-003-0021-3>
97. Schegg KM, Harrington LS, Neilsen S, Zweig RM, Peacock JH. Soluble and membrane-bound forms of brain acetylcholinesterase in Alzheimer’s disease. Neurobiol Aging 1992; 13:697–704. <https://doi.org/10.1016/0197-4580(92)90092-C>
98. Schneider F, Steenland K, Hernandez B, Wilson B, Krieger R, Spencer J, Margetich S. Monitoring peach harvest workers exposed to azinphosmethyl residues in Sutter County, California, 1991. Environ Health Perspect 1994; 102: 580–5. <https://doi.org/10.1289/ehp.94102580> <PubMed>
99. Schumacher M, Camp S, Maulet Y, Newton M, MacPhee-Quigley K, Taylor SS, Friedmann T, Taylor P.Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. Nature 1986; 319:407–9. <https://doi.org/10.1038/319407a0>
100. Schwarz M, Glick D, Loewenstein Y, Soreq H. Engineering of human cholinesterases explains and predicts diverse consequences of administration of various drugs and poisons. Pharmacol Ther 1995; 67: 283–322. <https://doi.org/10.1016/0163-7258(95)00019-D>
101. Shen WX, Jobling P, Horn JP. The sensitivity of nicotinic synapses in bullfrog sympathetic ganglia to alpha-bungarotoxin and neuronal-bungarotoxin. Br J Pharmacol 1994; 113:898–902. <https://doi.org/10.1111/j.1476-5381.1994.tb17077.x> <PubMed>
102. Sims NR, Bowen DM, Allen SJ, Smith CC, Neary D, Thomas DJ, Davison AN. Presynaptic cholinergic dysfunction in patients with dementia. J Neurochem 1983; 40:503–9. <https://doi.org/10.1111/j.1471-4159.1983.tb11311.x>
103. Smith AD, Cuello AC. Alzheimer’s disease and acetylcholinesterase-containing neurons. Lancet 1984; 1:513. <https://doi.org/10.1016/S0140-6736(84)92881-2>
104. Soreq H, Gnatt A, Loewenstein Y, Seville LF. Excavations into the active-site gorge of acetylcholinesterase. TIBS 1992; 17:353–8.
105. Stedman E, Barger G. Physostigmine (eserine). Part III. J Chem Soc 1925; 127:247–58. <https://doi.org/10.1039/CT9252700247>
106. Sussman JL, Harel M, Frolow F et al. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 1991; 253:872–9. <https://doi.org/10.1126/science.1678899>
107. Terry RD, Masliah E, Salmon DP et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30:572–80. <https://doi.org/10.1002/ana.410300410>
108. Tuovinen K, Kaliste-Korhonen E, Raushel FM, Hanninen O.Success of pyridostigmine, physostigmine, eptastigmine and phosphotriesterase treatments in acute sarin intoxication. Toxicology 1999; 134:169–78. <https://doi.org/10.1016/S0300-483X(99)00029-3>
109. Vandekar M, Heath DF. The reactivation of cholinesterase after inhibition in vivo by some dimethyl phosphate esters. Biochem J 1957; 67:202–8. <https://doi.org/10.1042/bj0670202> <PubMed>
110. Volpicelli LA, Levey AI. Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Prog Brain Res 2004; 145:59–66. <https://doi.org/10.1016/S0079-6123(03)45003-6>
111. Wilson IB. Acetylcholinesterases. XI. Reversibility of tetraethylpyrophosphate inhibition. J Biol Chem 1951; 190:111–7.
112. Wilson IB, Ginsburg S. Reactivation of acetylcholinesterase inhibited by alkylphosphates. Arch Biochem Biophys 1955; 54:269–71.
113. Weinstock M. Possible role of the cholinergic system and disease models. J Neural Transm Suppl. 1997; 49:93–102.
114. Whitehouse PJ, Au KS. Cholinergic receptors in aging and Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 1986; 10:665–76. <https://doi.org/10.1016/0278-5846(86)90035-7>
115. Wright CI, Geula C, Mesulam MM. Neuroglial cholinesterases in the normal brain and in Alzheimer’s disease: relationship to plaques, tangles, and patterns of selective vulnerability. Ann Neurol 1993; 34:373–84. <https://doi.org/10.1002/ana.410340312>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive